Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13072
Autor(en): Davidson-Marquis, Flavie
Gargiulo, Julian
Gómez-López, Esteban
Jang, Bumjoon
Kroh, Tim
Müller, Chris
Ziegler, Mario
Maier, Stefan A.
Kübler, Harald
Schmidt, Markus A.
Benson, Oliver
Titel: Coherent interaction of atoms with a beam of light confined in a light cage
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 10
Erschienen in: Light : science & applications 10 (2021), No. 114
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130916
http://elib.uni-stuttgart.de/handle/11682/13091
http://dx.doi.org/10.18419/opus-13072
ISSN: 2047-7538
Zusammenfassung: Controlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41377-021-00556-z.pdf2,5 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons