Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13119
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorGiesselmann, Jan-
dc.contributor.authorMeyer, Fabian-
dc.contributor.authorRohde, Christian-
dc.date.accessioned2023-06-05T11:40:36Z-
dc.date.available2023-06-05T11:40:36Z-
dc.date.issued2020de
dc.identifier.issn0006-3835-
dc.identifier.issn1572-9125-
dc.identifier.other1850530106-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131389de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13138-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13119-
dc.description.abstractThis article considers one-dimensional random systems of hyperbolic conservation laws. Existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws, which involve random initial data and random flux functions, are established. Based on these results an a posteriori error analysis for a numerical approximation of the random entropy solution is presented. For the stochastic discretization, a non-intrusive approach, namely the Stochastic Collocation method is used. The spatio-temporal discretization relies on the Runge-Kutta Discontinuous Galerkin method. The a posteriori estimator is derived using smooth reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. The scaling properties of the residuals are investigated and the efficiency of the proposed adaptive algorithms is illustrated in various numerical examples.en
dc.description.sponsorshipBaden-Württemberg Stiftungde
dc.description.sponsorshipGerman Research Foundationde
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s10543-019-00794-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc510de
dc.titleA posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation lawsen
dc.typearticlede
dc.date.updated2023-05-15T00:28:08Z-
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten619-649de
ubs.publikation.sourceBIT numerical mathematics 60 (2020), S. 619-649de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s10543-019-00794-z.pdf740,34 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons