Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13147
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSchreiber, Christoph-
dc.contributor.authorMüller, Ralf-
dc.contributor.authorKuhn, Charlotte-
dc.date.accessioned2023-06-14T09:09:35Z-
dc.date.available2023-06-14T09:09:35Z-
dc.date.issued2020de
dc.identifier.issn0939-1533-
dc.identifier.issn1432-0681-
dc.identifier.other1850905428-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131663de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13166-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13147-
dc.description.abstractWithin this work, we utilize the framework of phase field modeling for fracture in order to handle a very crucial issue in terms of designing technical structures, namely the phenomenon of fatigue crack growth. So far, phase field fracture models were applied to a number of problems in the field of fracture mechanics and were proven to yield reliable results even for complex crack problems. For crack growth due to cyclic fatigue, our basic approach considers an additional energy contribution entering the regularized energy density function accounting for crack driving forces associated with fatigue damage. With other words, the crack surface energy is not solely in competition with the time-dependent elastic strain energy but also with a contribution consisting of accumulated energies, which enables crack extension even for small maximum loads. The load time function applied to a certain structure has an essential effect on its fatigue life. Besides the pure magnitude of a certain load cycle, it is highly decisive at which point of the fatigue life a certain load cycle is applied. Furthermore, the level of the mean load has a significant effect. We show that the model developed within this study is able to predict realistic fatigue crack growth behavior in terms of accurate growth rates and also to account for mean stress effects and different stress ratios. These are important properties that must be treated accurately in order to yield an accurate model for arbitrary load sequences, where various amplitude loading occurs.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s00419-020-01821-0de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titlePhase field simulation of fatigue crack propagation under complex load situationsen
dc.typearticlede
dc.date.updated2023-05-15T07:37:16Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutFakultät Konstruktions-, Produktions- und Fahrzeugtechnik (Institutsübergreifend)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten563-577de
ubs.publikation.sourceArchive of applied mechanics 91 (2021), S. 563-577de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00419-020-01821-0.pdf929,19 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons