Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13206
Autor(en): Niggemann, Oliver
Seifert, Udo
Titel: Field-theoretic thermodynamic uncertainty relation : general formulation exemplified with the Kardar-Parisi-Zhang equation
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 1142-1174
Erschienen in: Journal of statistical physics 178 (2020), S. 1142-1174
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132255
http://elib.uni-stuttgart.de/handle/11682/13225
http://dx.doi.org/10.18419/opus-13206
ISSN: 0022-4715
1572-9613
Zusammenfassung: We propose a field-theoretic thermodynamic uncertainty relation as an extension of the one derived so far for a Markovian dynamics on a discrete set of states and for overdamped Langevin equations. We first formulate a framework which describes quantities like current, entropy production and diffusivity in the case of a generic field theory. We will then apply this general setting to the one-dimensional Kardar-Parisi-Zhang equation, a paradigmatic example of a non-linear field-theoretic Langevin equation. In particular, we will treat the dimensionless Kardar-Parisi-Zhang equation with an effective coupling parameter measuring the strength of the non-linearity. It will be shown that a field-theoretic thermodynamic uncertainty relation holds up to second order in a perturbation expansion with respect to a small effective coupling constant. The calculations show that the field-theoretic variant of the thermodynamic uncertainty relation is not saturated for the case of the Kardar-Parisi-Zhang equation due to an excess term stemming from its non-linearity.
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s10955-019-02479-x.pdf583,6 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons