Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13255
Autor(en): Kunz, P.
Paulisch, M.
Osenberg, M.
Bischof, B.
Manke, I.
Nieken, U.
Titel: Prediction of electrolyte distribution in technical gas diffusion electrodes : from imaging to SPH simulations
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 381-403
Erschienen in: Transport in porous media 132 (2020), S. 381-403
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132740
http://elib.uni-stuttgart.de/handle/11682/13274
http://dx.doi.org/10.18419/opus-13255
ISSN: 0169-3913
1573-1634
Zusammenfassung: The performance of the gas diffusion electrode (GDE) is crucial for technical processes like chlorine-alkali electrolysis. The function of the GDE is to provide an intimate contact between gaseous reactants, the solid catalyst, and the liquid electrolyte. To accomplish this, the GDE is composed of wetting and non-wetting materials to avoid electrolyte breakthrough. Knowledge of the spatial distribution of the electrolyte in the porous structure is a prerequisite for further improvement of GDE. Therefore, the ability of the electrolyte to imbibe into the porous electrode is studied by direct numeric simulations in a reconstructed porous electrode. The information on the geometry, including the information on silver and PTFE distribution of the technical GDE, is extracted from FIB/SEM imaging including a segmentation into the different phases. Modeling of wetting phenomena inside the GDE is challenging, since surface tension and wetting of the electrolyte on silver and PTFE surfaces must be included in a physically consistent manner. Recently, wetting was modeled from first principles on the continuum scale by introducing a contact line force. Here, the newly developed contact line force model is employed to simulate two-phase flow in the solid microstructures using the smoothed particle hydrodynamics (SPH) method. In this contribution, we present the complete workflow from imaging of the GDE to dynamic SPH simulations of the electrolyte intrusion process. The simulations are used to investigate the influence of addition of non-wetting PTFE as well as the application of external pressure differences between the electrolyte and the gas phase on the intrusion process.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s11242-020-01396-y.pdf2,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons