Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-13397
Autor(en): | Wagner, Vincent Radde, Nicole Erika |
Titel: | SiCaSMA : an alternative stochastic description via concatenation of Markov processes for a class of catalytic systems |
Erscheinungsdatum: | 2021 |
Dokumentart: | Zeitschriftenartikel |
Seiten: | 13 |
Erschienen in: | Mathematics 9 (2021), No. 1074 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134167 http://elib.uni-stuttgart.de/handle/11682/13416 http://dx.doi.org/10.18419/opus-13397 |
ISSN: | 2227-7390 |
Zusammenfassung: | The Chemical Master Equation is a standard approach to model biochemical reaction networks. It consists of a system of linear differential equations, in which each state corresponds to a possible configuration of the reaction system, and the solution describes a time-dependent probability distribution over all configurations. The Stochastic Simulation Algorithm (SSA) is a method to simulate sample paths from this stochastic process. Both approaches are only applicable for small systems, characterized by few reactions and small numbers of molecules. For larger systems, the CME is computationally intractable due to a large number of possible configurations, and the SSA suffers from large reaction propensities. In our study, we focus on catalytic reaction systems, in which substrates are converted by catalytic molecules. We present an alternative description of these systems, called SiCaSMA, in which the full system is subdivided into smaller subsystems with one catalyst molecule each. These single catalyst subsystems can be analyzed individually, and their solutions are concatenated to give the solution of the full system. We show the validity of our approach by applying it to two test-bed reaction systems, a reversible switch of a molecule and methyltransferase-mediated DNA methylation. |
Enthalten in den Sammlungen: | 07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
mathematics-09-01074.pdf | 912 kB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons