Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13397
Autor(en): Wagner, Vincent
Radde, Nicole Erika
Titel: SiCaSMA : an alternative stochastic description via concatenation of Markov processes for a class of catalytic systems
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 13
Erschienen in: Mathematics 9 (2021), No. 1074
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134167
http://elib.uni-stuttgart.de/handle/11682/13416
http://dx.doi.org/10.18419/opus-13397
ISSN: 2227-7390
Zusammenfassung: The Chemical Master Equation is a standard approach to model biochemical reaction networks. It consists of a system of linear differential equations, in which each state corresponds to a possible configuration of the reaction system, and the solution describes a time-dependent probability distribution over all configurations. The Stochastic Simulation Algorithm (SSA) is a method to simulate sample paths from this stochastic process. Both approaches are only applicable for small systems, characterized by few reactions and small numbers of molecules. For larger systems, the CME is computationally intractable due to a large number of possible configurations, and the SSA suffers from large reaction propensities. In our study, we focus on catalytic reaction systems, in which substrates are converted by catalytic molecules. We present an alternative description of these systems, called SiCaSMA, in which the full system is subdivided into smaller subsystems with one catalyst molecule each. These single catalyst subsystems can be analyzed individually, and their solutions are concatenated to give the solution of the full system. We show the validity of our approach by applying it to two test-bed reaction systems, a reversible switch of a molecule and methyltransferase-mediated DNA methylation.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
mathematics-09-01074.pdf912 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons