Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13420
Autor(en): Praditia, Timothy
Karlbauer, Matthias
Otte, Sebastian
Oladyshkin, Sergey
Butz, Martin V.
Nowak, Wolfgang
Titel: Learning groundwater contaminant diffusion‐sorption processes with a finite volume neural network
Erscheinungsdatum: 2022
Dokumentart: Zeitschriftenartikel
Seiten: 28
Erschienen in: Water resources research 58 (2022), No. e2022WR033149
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134390
http://elib.uni-stuttgart.de/handle/11682/13439
http://dx.doi.org/10.18419/opus-13420
ISSN: 1944-7973
0043-1397
Zusammenfassung: Improved understanding of complex hydrosystem processes is key to advance water resources research. Nevertheless, the conventional way of modeling these processes suffers from a high conceptual uncertainty, due to almost ubiquitous simplifying assumptions used in model parameterizations/closures. Machine learning (ML) models are considered as a potential alternative, but their generalization abilities remain limited. For example, they normally fail to predict accurately across different boundary conditions. Moreover, as a black box, they do not add to our process understanding or to discover improved parameterizations/closures. To tackle this issue, we propose the hybrid modeling framework FINN (finite volume neural network). It merges existing numerical methods for partial differential equations (PDEs) with the learning abilities of artificial neural networks (ANNs). FINN is applied on discrete control volumes and learns components of the investigated system equations, such as numerical stencils, model parameters, and arbitrary closure/constitutive relations. Consequently, FINN yields highly interpretable results. We demonstrate FINN's potential on a diffusion‐sorption problem in clay. Results on numerically generated data show that FINN outperforms other ML models when tested under modified boundary conditions, and that it can successfully differentiate between the usual, known sorption isotherms. Moreover, we also equip FINN with uncertainty quantification methods to lay open the total uncertainty of scientific learning, and then apply it to a laboratory experiment. The results show that FINN performs better than calibrated PDE‐based models as it is able to flexibly learn and model sorption isotherms without being restricted to choose among available parametric models.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
WRCR_WRCR26346.pdf5,14 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons