Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14341
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorZander, Christian-
dc.contributor.authorHungenberg, Klaus‐Dieter-
dc.contributor.authorSchall, Thomas-
dc.contributor.authorSchwede, Christian-
dc.contributor.authorNieken, Ulrich-
dc.date.accessioned2024-05-08T09:47:54Z-
dc.date.available2024-05-08T09:47:54Z-
dc.date.issued2020de
dc.identifier.issn1862-8338-
dc.identifier.issn1862-832X-
dc.identifier.other1888129638-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143609de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14360-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14341-
dc.description.abstractBased on a recently suggested reaction mechanism, which involves the production and propagation of terminal double bonds (TDBs), kinetic models for the polymerization of N‐vinylpyrrolidone in aqueous solution are developed. Two modeling strategies, the classes and the pseudodistribution approach, are applied to handle the multidimensional property distributions that result from this reaction mechanism and to get detailed structural property information, e.g., on the chain length distribution and the distribution of TDBs. The structural property information is then used to develop reduced models with significantly lower computational effort, which can be used for process design, on‐line applications or coupled to computational fluid dynamic simulations. To validate the derivations, the models are first compared against each other and finally to experimental results from a continuous stirred tank reactor. The evolution of monomer conversion and molecular weight average data as well as molecular weight distributions can be represented very well by the models that are derived in this article. These results support the correctness of the reaction mechanism predicted by quantum mechanical simulations.en
dc.description.sponsorshipBMWide
dc.language.isoende
dc.relation.uridoi:10.1002/mren.202000009de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleModeling strategies for the propagation of terminal double bonds during the polymerization of N‐vinylpyrrolidone and experimental validationen
dc.typearticlede
dc.date.updated2023-11-14T06:17:23Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Chemische Verfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceMacromolecular reaction engineering 14 (2020), No. 2000009de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
MREN_MREN202000009.pdf4,92 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons