Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14556
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMahkam, Nima-
dc.contributor.authorAghakhani, Amirreza-
dc.contributor.authorSheehan, Devin-
dc.contributor.authorGardi, Gaurav-
dc.contributor.authorKatzschmann, Robert-
dc.contributor.authorSitti, Metin-
dc.date.accessioned2024-06-19T15:04:52Z-
dc.date.available2024-06-19T15:04:52Z-
dc.date.issued2023de
dc.identifier.issn2198-3844-
dc.identifier.issn2198-3844-
dc.identifier.other1894398084-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145757de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14575-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14556-
dc.description.abstractAcoustically‐driven bubbles at the micron scale can generate strong microstreaming flows in its surrounding fluidic medium. The tunable acoustic streaming strength of oscillating microbubbles and the diversity of the generated flow patterns enable the design of fast‐moving microrobots with multimodal locomotion suitable for biomedical applications. The acoustic microrobots holding two coupled microbubbles inside a rigid body are presented; trapped bubbles inside the L‐shaped structure with different orifices generate various streaming flows, thus allowing multiple degrees of freedom in locomotion. The streaming pattern and mean streaming speed depend on the intensity and frequency of the acoustic wave, which can trigger four dominant locomotion modes in the microrobot, denoted as translational and rotational, spinning, rotational, and translational modes. Next, the effect of various geometrical and actuation parameters on the control and navigation of the microrobot is investigated. Furthermore, the surface‐slipping multimodal locomotion, flow mixing, particle manipulation capabilities, the effective interaction of high flow rates with cells, and subsequent cancerous cell lysing abilities of the proposed microrobot are demonstrated. Overall, these results introduce a design toolbox for the next generation of acoustic microrobots with higher degrees of freedom with multimodal locomotion in biomedical applications.en
dc.description.sponsorshipMax Planck ETH Center for Learning Systemsde
dc.description.sponsorshipMax‐Planck‐Gesellschaftde
dc.language.isoende
dc.relation.uridoi:10.1002/advs.202304233de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc333.7de
dc.titleAcoustic streaming‐induced multimodal locomotion of bubble‐based microrobotsen
dc.typearticlede
dc.date.updated2024-04-25T13:24:20Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Biomaterialien und biomolekulare Systemede
ubs.institutMax-Planck-Institut für Intelligente Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceAdvanced science 10 (2023), No. 2304233de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ADVS_ADVS6592.pdf4,06 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons