Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14556
Autor(en): Mahkam, Nima
Aghakhani, Amirreza
Sheehan, Devin
Gardi, Gaurav
Katzschmann, Robert
Sitti, Metin
Titel: Acoustic streaming‐induced multimodal locomotion of bubble‐based microrobots
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 14
Erschienen in: Advanced science 10 (2023), No. 2304233
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145757
http://elib.uni-stuttgart.de/handle/11682/14575
http://dx.doi.org/10.18419/opus-14556
ISSN: 2198-3844
2198-3844
Zusammenfassung: Acoustically‐driven bubbles at the micron scale can generate strong microstreaming flows in its surrounding fluidic medium. The tunable acoustic streaming strength of oscillating microbubbles and the diversity of the generated flow patterns enable the design of fast‐moving microrobots with multimodal locomotion suitable for biomedical applications. The acoustic microrobots holding two coupled microbubbles inside a rigid body are presented; trapped bubbles inside the L‐shaped structure with different orifices generate various streaming flows, thus allowing multiple degrees of freedom in locomotion. The streaming pattern and mean streaming speed depend on the intensity and frequency of the acoustic wave, which can trigger four dominant locomotion modes in the microrobot, denoted as translational and rotational, spinning, rotational, and translational modes. Next, the effect of various geometrical and actuation parameters on the control and navigation of the microrobot is investigated. Furthermore, the surface‐slipping multimodal locomotion, flow mixing, particle manipulation capabilities, the effective interaction of high flow rates with cells, and subsequent cancerous cell lysing abilities of the proposed microrobot are demonstrated. Overall, these results introduce a design toolbox for the next generation of acoustic microrobots with higher degrees of freedom with multimodal locomotion in biomedical applications.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ADVS_ADVS6592.pdf4,06 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons