Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14685
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorHossfeld, Max-
dc.date.accessioned2024-07-19T14:14:44Z-
dc.date.available2024-07-19T14:14:44Z-
dc.date.issued2022de
dc.identifier.issn2075-4701-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147047de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14704-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14685-
dc.description.abstractThis paper reports on a simulation framework capable of predicting the outcomes of the friction stir welding process. Numerical tool development becomes directly possible without the need for previous calibration to welding experiments. The predictive power of the framework is demonstrated by a case study for numerical tool development and validated experimentally. Different tool geometries with high levels of detail and active material flow features are investigated, and their effect on the process outcomes is quantified. The simulation framework is found to be able to predict forces, material flow, temperature fields, weld formation and welding defects a priori, in detail and precisely. This applies to the outer appearance of the weld as well as the location, shape, and size of inner welding defects. Causes for defects can be identified, analyzed and remedied. Compared to the validation experiment, the simulation showed a slight overestimation of the process impact in the case study. Since the framework relies strictly on analytically describable physics, the efforts for modeling the process are moderate considering the precision of the results.en
dc.description.sponsorshipGerman Research Foundation (DFG)de
dc.language.isoende
dc.relation.uridoi:10.3390/met12091432de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleModeling friction stir welding : on prediction and numerical tool developmenten
dc.typearticlede
dc.date.updated2023-11-14T01:28:03Z-
ubs.fakultaetZentrale Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutMaterialprüfungsanstalt Universität Stuttgart (MPA Stuttgart, Otto-Graf-Institut (FMPA))de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.noppnyesde
ubs.publikation.seiten15de
ubs.publikation.sourceMetals 12 (2022), No. 1432de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:13 Zentrale Universitätseinrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
metals-12-01432.pdf19,51 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons