Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14715
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorReeber, Tim-
dc.contributor.authorWolf, Jan-
dc.contributor.authorMöhring, Hans-Christian-
dc.date.accessioned2024-07-25T09:35:14Z-
dc.date.available2024-07-25T09:35:14Z-
dc.date.issued2024de
dc.identifier.issn2504-4494-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147340de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14734-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14715-
dc.description.abstractCutting simulations via the Finite Element Method (FEM) have recently gained more significance due to ever increasing computational performance and thus better resulting accuracy. However, these simulations are still time consuming and therefore cannot be deployed for an in situ evaluation of the machining processes in an industrial environment. This is due to the high non-linear nature of FEM simulations of machining processes, which require considerable computational resources. On the other hand, machine learning methods are known to capture complex non-linear behaviors. One of the most widely applied material models in cutting simulations is the Johnson-Cook material model, which has a great influence on the output of the cutting simulations and contributes to the non-linear behavior of the models, but its influence on cutting forces is sometimes difficult to assess beforehand. Therefore, this research aims to capture the highly non-linear behavior of the material model by using a dataset of multiple short-duration cutting simulations from Abaqus to learn the relationship of the Johnson-Cook material model parameters and the resulting cutting forces for a constant set of cutting conditions. The goal is to shorten the time to simulate cutting forces by encapsulating complex cutting conditions in dependence of material parameters in a single model. A total of five different models are trained and the performance is evaluated. The results show that Gradient Boosted Machines capture the influence of varying material model parameters the best and enable good predictions of cutting forces as well as deliver insights into the relevance of the material parameters for the cutting and thrust forces in orthogonal cutting.en
dc.description.sponsorshipThis research was funded by the German Research Foundation (DFG), within the research priority program SPP 2402. The APC was funded by the DFG. The authors thank the DFG for this funding and intensive technical support.de
dc.description.sponsorshipDFGde
dc.language.isoende
dc.relation.uridoi:10.3390/jmmp8030107de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleA data-driven approach for cutting force prediction in FEM machining simulations using gradient boosted machinesen
dc.typearticlede
dc.date.updated2024-06-19T17:24:51Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Werkzeugmaschinende
ubs.publikation.noppnyesde
ubs.publikation.seiten14de
ubs.publikation.sourceJournal of manufacturing and materials processing 8 (2024), No. 107de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
jmmp-08-00107.pdf996,9 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons