Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14996
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorJarwitz, Michael-
dc.contributor.authorMichalowski, Andreas-
dc.date.accessioned2024-10-04T09:07:17Z-
dc.date.available2024-10-04T09:07:17Z-
dc.date.issued2024de
dc.identifier.issn2212-8271-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150155de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15015-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14996-
dc.description.abstractPhysics-informed hybrid models, the combination of physics and machine learning, have already shown considerable benefits for quantitative predictions of process constraints, such as the threshold of deep-penetration laser welding. However, despite the improved prediction accuracy and extrapolation capability of such models, there can still be cases where the predictions of the model, including the confidence region, result in values that are not consistent with physical boundary conditions. Therefore, this paper presents the application of additional output constraints to a physics-informed hybrid model to further improve the compliance of the model with physics. Gaussian processes are used for the machine learning model and output warping is used to incorporate the output constraints directly into the model. The approach is demonstrated at the example of a hybrid model for the prediction of the threshold of deep-penetration laser welding.en
dc.language.isoende
dc.relation.uridoi:10.1016/j.procir.2024.08.226de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleApplication of output constraints to a physics-informed hybrid model for the prediction of the threshold of deep-penetration laser weldingen
dc.typeconferenceObjectde
ubs.bemerkung.externThe presented work was funded by the Ministry of Science, Research and the Arts of the Federal State of Baden-Wuerttemberg within the “InnovationCampus Future Mobility”, which is gratefully acknowledged.de
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Strahlwerkzeugede
ubs.konferenznameCIRP Conference on Photonic Technologies (13th, 2024, Fürth)de
ubs.publikation.noppnyesde
ubs.publikation.seiten789-792de
ubs.publikation.sourceProcedia CIRP 124 (2024) 789-792de
ubs.publikation.typKonferenzbeitragde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Jarwitz2024.pdf460,37 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons