Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-9887
Autor(en): Andrieux, Sébastien
Titel: Monodisperse highly ordered and polydisperse biobased solid foams
Erscheinungsdatum: 2018
Dokumentart: Dissertation
Seiten: xvii, 165
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-99045
http://elib.uni-stuttgart.de/handle/11682/9904
http://dx.doi.org/10.18419/opus-9887
Zusammenfassung: The aim of this work was the synthesis of monodisperse highly ordered biobased polymer foams and a comparison with their polydisperse counterparts. We used the biobased and biodegradable polymer chitosan, which we cross-linked with genipin. The polymer foams were synthesised via foam templating, i.e. via a liquid foam whose continuous phase contains a polymer and can be solidified. In order to obtain monodisperse highly ordered polymer foams, one first has to generate monodisperse highly ordered liquid foam templates. We did so by using microfluidics, which allows to produce monodisperse liquid foams with bubble sizes from 200 µm to 800 µm and polydispersities below 5%. The monodisperse foams were collected outside of the microfluidic channels and left to self-order under the influence of gravity and confinement. We studied the kinetics of the cross-linking reaction to find the optimal storage conditions during cross-linking. Once cross-linked we freeze-dried the gelled foams to obtain solid chitosan foams. We compared the morphological properties of the solid foams with those of the liquid templates in order to test the efficiency of the developed templating route. We observed how modifying the cross-linking and drying conditions can strongly affect the morphology of the solid foams. The main issue was to maintain the key properties of the liquid foam template throughout the solidification process, namely the bubble size distribution, the structural order and the density. We then compared the synthesised monodisperse polymer foams with their polydisperse counterparts. Although easy foaming methods exist for the generation of polydisperse foams, they do not allow the control over the polydispersity. We thus used microfluidics to generate liquid chitosan foams with tunable polydispersities from below 5% up to 26%. Microfluidics allows to match the average bubble size and density of the polydisperse liquid chitosan foam with those of the monodisperse counterpart. After solidifying the liquid templates we obtained solid foams with controlled polydispersities and studied the in uence of the polydispersity on the mechanical properties. However, we observed that not the polydispersity but the foam density was the main parameter at play. Moreover, the solid chitosan foams had weak mechanical properties with elastic moduli below 100 kPa. To overcome this issue, we incorporated cellulose nanofibres to the original chitosan solution and followed the developed route for foam templating. We had to adapt the microfluidic parameters to account for the viscosity changes brought about by the nanofibres. However, we managed to produce monodisperse liquid foams having the same bubble size, i.e. ~300 µm, but different amounts of cellulose nanofibres. The cellulose content had a strong influence on the solid foam morphology in general and on the pore connectivity in particular.
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation Sebastien Andrieux.pdf103,83 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.