03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
Item Open Access The effect of pooling on the detection of the nucleocapsid protein of SARS-CoV-2 with rapid antigen tests(2021) Berking, Tim; Lorenz, Sabrina; Ulrich, Alexander; Greiner, Joachim; Kervio, Eric; Bremer, Jennifer; Wege, Christina; Kleinow, Tatjana; Richert, ClemensThe COVID-19 pandemic puts significant stress on the viral testing capabilities of many countries. Rapid point-of-care (PoC) antigen tests are valuable tools but implementing frequent large scale testing is costly. We have developed an inexpensive device for pooling swabs, extracting specimens, and detecting viral antigens with a commercial lateral flow test for the nucleocapsid protein of SARS-CoV-2 as antigen. The holder of the device can be produced locally through 3D printing. The extraction and the elution can be performed with the entire set-up encapsulated in a transparent bag, minimizing the risk of infection for the operator. With 0.35 mL extraction buffer and six swabs, including a positive control swab, 43 ± 6% (n = 8) of the signal for an individual extraction of a positive control standard was obtained. Image analysis still showed a signal-to-noise ratio of approximately 2:1 at 32-fold dilution of the extract from a single positive control swab. The relative signal from the test line versus the control line was found to scale linearly upon dilution (R2 = 0.98), indicating that other pooling regimes are conceivable. A pilot project involving 14 participants and 18 pooled tests in a laboratory course at our university did not give any false positives, and an individual case study confirmed the ability to detect a SARS-CoV-2 infection with five-fold or six-fold pooling, including one swab from a PCR-confirmed COVID patient. These findings suggest that pooling can make frequent testing more affordable for schools, universities, and similar institutions, without decreasing sensitivity to an unacceptable level.Item Open Access Piezoelectric templates - new views on biomineralization and biomimetics(2016) Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, JoachimBiomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V−1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.Item Open Access Screening, cloning and biochemical characterisation of novel esterases from bacillus sp. associated with the marine sponge aplysina aerophoba(2005) Karpushova, Anna Alexandrovna; Brümmer, Franz; Lange, Stefan; Schmid, Rolf D.Two novel esterases (EstB1 and EstB2) were isolated from a genomic library of Bacillus sp. associated with the marine sponge Aplysina aerophoba. EstB1 shows low identity (26-44 %)with the published hydrolases of the genus Bacillus, whereas EstB2 shows high identity (73-74 %) with the carboxylesterases from B. cereus and B. anthracis. Both esterases were efficiently expressed in Escherichia coli under the control of T7 promoter using the vector pET-22b(+). Recombinant EstB1 was purified in a single step to electrophoretic homogeneity by IMAC. A method for the refolding of inclusion bodies formed by the recombinant EstB2 was established to obtain active enzyme. Substrate specificity of the two enzymes towards pnitrophenyl and methyl esters and the respective kinetic parameters Km and Vmax were determined. The temperature optima of EstB1 and EstB2 were determined to be in the range of 30-50°C and 20-35°C, respectively. The pH optima were found to be in the range of 6.5-7.5 and 6.5-8.0, respectively. Both enzymes showed the highest stability in up to 50 % (v/v) DMSO followed by methanol, ethanol and 2-propanol. The influence of high NaCl and KCl concentrations was tested. The inhibition effect of 10-50 mM Zn2+ and 50 mM Mg2+ and Ca2+ ions was observed for both esterases. 1-5 mM PMSF deactivated the enzymes, whereas β-mercaptoethanol, DTT and EDTA had no effect on the enzymes activity.