03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
15 results
Search Results
Item Open Access Luminescence properties of Y3F[Si3O10]:Ln3+ (Ln = Eu, Tb, Er) with thalenite-type host lattice and crystal structure of Tm3F[Si3O10](2023) Schäfer, Marion C.; Petter, Michael; Hartenbach, Ingo; Locke, Ralf J. C.; Zhang, Shuang; Wickleder, Claudia; Schleid, ThomasWith Tm3F[Si3O10], a new representative of the Ln3F[Si3O10] series could be synthesized by the reaction of Tm2O3, TmF3 and SiO2 (molar ratio: 1:1:3), applying an excess of CsBr as a fluxing agent in gas-tightly sealed platinum crucibles for eight days at 750 °C, and designed to yield Tm3F3[Si3O9] or Cs2TmF[Si4O10]. Single crystals of Tm3F[Si3O10] (monoclinic, P21/n; a = 725.04(6), b = 1102.43(9), c = 1032.57(8) pm, β = 97.185(7)°; Z = 4) appear as pale celadon, transparent, air- and water-resistant rhombic plates. According to its thalenite-type structure, Tm3F[Si3O10] contains catena-trisilicate anions [Si3O10]8− and triangular [FTm3]8+ cations. The three crystallographically different Tm3+ cations are coordinated by seven plus one (Tm1) or only seven anions (Tm2 and Tm3) exhibiting a single F- anion for each polyhedron, additional to the majority of O2- anions. Furthermore, the luminescence properties of the isotypic colorless compound Y3F[Si3O10] doped with Eu3+ (red emission), Tb3+ (green emission) and Er3+ (yellow and infrared emission), respectively, are reported in presenting their different excitation and emission spectra.Item Open Access Two light-metal dihydrogenisocyanurate hydrates linked by diagonal relationship : syntheses, crystal structures, and vibrational spectra of Li[H2N3C3O3]·1.75 H2O and Mg[H2N3C3O3]2·8 H2O(2020) Reckeweg, Olaf; Lissner, Falk; Blaschkowski, Björn; Gross, Peter; Höppe, Henning A.; Schleid, ThomasSingle‐crystalline materials of Li[H2N3C3O3]·1.75 H2O and Mg[H2N3C3O3]2·8 H2O were obtained by dissolving stoichiometric amounts of the respective carbonates with cyanuric acid in boiling water followed by gentle evaporation of excess water after cooling to room temperature. Even though both of these compounds crystallize in the triclinic space group P1 according to X‐ray structure analyses of their colorless and transparent single crystals, they adopt two new different structure types. Li[H2N3C3O3]·1.75 H2O exhibits the unit‐cell parameters a = 884.71(6) pm, b = 905.12(7) pm, c = 964.38(7) pm, α = 67.847(2)°, β = 62.904(2)° and γ = 68.565(2)° (Z = 4), whereas the lattice parameters for Mg[H2N3C3O3]2·8 H2O are a = 691.95(5) pm, b = 1055.06(8) pm, c = 1183.87(9) pm, α = 85.652(2)°, β = 83.439(2)° and γ = 79.814(2)° (Z = 2). In both cases, the singly deprotonated isocyanuric acid forms monovalent anions consisting of cyclic [H2N3C3O3]– units, which are arranged in ribbons typical for most hitherto known monobasic isocyanurate hydrates. The structures are governed by the oxophilic strength of the respective cation which means that they fulfil their oxophilic coordination requirements either solely with water molecules ([Mg(OH2)6]2+ for Mg2+) or with crystal water and one or two direct coordinative contacts to carbonyl oxygen atoms (O(cy)) of [H2N3C3O3]– anions ([(Li(OH2)2-3(O(cy)1-2]+ for Li+). In both structures occur dominant hydrogen bonds N-H···O within the anionic [H2N3C3O3]- ribbons as well as hydrogen bonds O-H···O between these ribbons and the hydrated Li+ and Mg2+ cations.Item Open Access Syntheses and patterns of changes in structural parameters of the new quaternary tellurides EuRECuTe3 (RE = Ho, Tm, and Sc) : experiment and theory(2024) Ruseikina, Anna V.; Grigoriev, Maxim V.; Locke, Ralf J. C.; Chernyshev, Vladimir A.; Schleid, ThomasThe layered orthorhombic quaternary tellurides EuRECuTe3 (RE = Ho, Tm, Sc) with Cmcm symmetry were first synthesized. Single crystals of the compounds up to 500 μm in size were obtained by the halide-flux method at 1120 K from elements taken in a ratio of Eu/RE/Cu/Te = 1:1:1:3. In the series of compounds, the changes in lattice parameters were in the ranges a = 4.3129(3)-4.2341(3) Å, b = 14.3150(9)-14.1562(9) Å, c = 11.2312(7)-10.8698(7) Å, V = 693.40(8)-651.52(7) Å3. In the structures, the cations Eu2+, RE3+ (RE = Ho, Tm, Sc), and Cu+ occupied independent crystallographic positions. The structures were built with distorted copper tetrahedra forming infinite chains [CuTe4]7− and octahedra [RETe6]9- forming two-dimensional layers along the a-axis. These coordination polyhedra formed parallel two-dimensional layers CuRETe32-∞2. Between the layers, along the a-axis, chains of europium trigonal prisms [EuTe6]10- were located. Regularities in the variation of structural parameters and the degree of distortion of coordination polyhedra depending on the ionic radius of the rare-earth metal in the compounds EuRECuCh3 (RE = Ho, Er, Tm, Lu, Sc; Ch = S, Se, Te) were established. It is shown that with a decrease in the ionic radius ri(RE3+) in the compounds EuRECuTe3, the unit-cell volume, bond length d(RE-Te), distortion degree [CuTe4]7-, and crystallographic compression of layers [RECuTe3]2- decreased. The distortion degree of tetrahedral polyhedra [CuCh4]7-, as well as the structural parameters in europium rare-earth copper tellurides EuRECuTe3, were higher than in isostructural quaternary chalcogenides. Ab initio calculations of the crystalline structure, phonon spectrum, and elastic properties of compounds EuRECuTe3 (RE = Ho, Tm, and Sc) ere conducted. The types and wave numbers of fundamental modes were determined, and the involvement of ions in IR and Raman modes was assessed. The calculated data of the crystal structure correlated well with the experimental results.Item Open Access Synthesis, crystal structure and properties of the new laminar quaternary tellurides SrLnCuTe3 (Ln = Sm, Gd-Tm and Lu)(2023) Ruseikina, Anna V.; Grigoriev, Maxim V.; Molokeev, Maxim S.; Garmonov, Alexander A.; Elyshev, Andrey V.; Locke, Ralf J. C.; Schleid, ThomasThis paper reports for the first time on the new laminar quaternary orthorhombic heterometallic quaternary tellurides SrLnCuTe3, the fabrication of which has been a challenge until this work. Data on the crystal structure of tellurides complete the series of quaternary strontium chalcogenides SrLnCuCh3 (Ch = S, Se, Te). Single crystals of the compounds were synthesized from the elements by the halogenide-flux method at 1070 K. The compounds are crystallizing in two space groups Pnma (Ln = Sm, Gd and Tb) and Cmcm (Ln = Dy-Tm and Lu). For SrSmCuTe3 (a = 11.4592(7), b = 4.3706(3), c = 14.4425(9) Å, space group: Pnma) with the largest lanthanoid cation, Sr2+ shows C.N. = 7, whereas Sm3+ reveals a diminished coordination number C.N. = 6. For SrLuCuTe3 (a = 4.3064(3), b = 14.3879(9), c = 11.1408(7) Å, space group: Cmcm) with the smallest lanthanoid cation, coordination numbers of six are realized for both high-charged cations (Sr2+ and Lu3+: C.N. = 6). The cations Sr2+, Ln3+, Cu+ each take independent positions. The structures are built by distorted [CuTe4]7- tetrahedra, forming the infinite chains {∞1[Cu(Te1)1/1t(Te2)1/1t(Te3)2/2e]5−} along [010] in SrLnCuTe3 (Ln = Sm, Gd and Tb) and [100] in SrLnCuTe3 (Ln = Dy-Tm and Lu). The distortion of the polyhedra [CuTe4]7- was compared for the whole series SrLnCuTe3 by means of τ4-descriptor for the four coordinating Te2- anions, which revealed a decrease in the degree of distortion with a decreasing radius at Ln3+. The distorted octahedra [LnTe6]9- form layers {∞2[Ln(Te1)2/2(Te2)2/2(Te3)2/2]3−}. The distorted octahedra and tetrahedra fuse to form parallel layers {∞2[CuLnTe3]2−} and between them, the Sr2+ cations providing three-dimensionality of the structure are located. In the SrLnCuTe3 (Ln = Sm, Gd and Tb) structures, the Sr2+ cations center capped the trigonal prisms [SrTe6+1]12−, united in infinite chains {∞1[Sr(Te1)2/2(Te2)3/3(Te3)2/2]4−} along the [100] direction. The domains of existence of the Ba2MnS3, BaLaCuS3, Eu2CuS3 and KZrCuS3 structure types are defined in the series of orthorhombic chalcogenides SrLnCuCh3 (Ch = S, Se and Te). The tellurides SrLnCuTe3 (Ln = Tb-Er) of both structure types in the temperature range from 2 up to 300 K are paramagnetic, without showing clear signs of a magnetic phase transition.Item Open Access The triclinic lanthanoid(III) halide oxidoarsenates(III) Sm3Cl2[As2O5][AsO3] and Tm3Br2[As2O5][AsO3](2020) Goerigk, Felix C.; Schander, Svetlana; Wickleder, Mathias S.; Schleid, ThomasPale yellow single crystals of the composition Ln3X2[As2O5][AsO3] (Ln = Tm for X = Br and Ln = Sm for X = Cl) were obtained via solid‐state reactions in the systems Ln2O3/As2O3 from sealed silica ampoules using different halides as fluxing agents. Sm3Cl2[As2O5][AsO3] and Tm3Br2[As2O5][AsO3] crystallize isotypically in the triclinic space group P1 with Z = 2 and cell parameters of a = 543.51(4) pm, b = 837.24(6) pm, c = 1113.45(8) pm, α = 90.084(2)°, β = 94.532(2)°, γ = 90.487(2)° for the samarium and a = 534.96(4) pm, b = 869.26(6) pm, c = 1081.84(8) pm, α = 90.723(2)°, β = 94.792(2)° γ = 90.119(2)° for the thulium compound. The isotypic crystal structure of both representatives exhibits three crystallographically different Ln3+ cations, each with a coordination number of eight. (Ln1)3+ and (Ln2)3+ are only coordinated by three oxygen atoms, whereas (Ln3)3+ shows additional contacts to halide anions in forming square [LnO4X4]9- antiprisms. All As3+ cations are surrounded by three oxygen atoms in the shape of isolated [AsO3]3- ψ1‐tetrahedra. They occur either isolated or condensed as pyroanionic [As2O5]4- units with a bridging oxygen atom. In both anions, non‐binding lone‐pair electrons are present at the As3+ cations with a pronounced stereochemically active function.Item Open Access Synthesis and crystal‐structure analysis of the K2NiF4‐type hydride oxides LiLnEuH2-xO2 (Ln=La, Ce, Pr, Nd, Sm) and LiEu2H3O by neutron and X‐ray diffraction(2022) Hoslauer, Jean‐Louis; Zapp, Nicolas; Fischer, Henry E.; Rudolph, Daniel; Kohlmann, Holger; Schleid, ThomasThe hydride oxides LiLnEuH2-xO2 (Ln=La, Ce, Pr, Nd and Sm) were synthesized by reaction of the lanthanide sesquioxides with europium monoxide, europium dihydride and lithium hydride under inert conditions at 750 °C as black powders. They crystallize in the tetragonal K2NiF4‐type structure (space group: I4/mmm) with a mixed Ln3+/Eu2+ occupation. The crystal structures of the europium representatives LiLaEuH2-xO2 and LiLaEuD2-xO2 were analyzed by powder neutron diffraction data at short wavelengths (λ=70 pm). Hydrogen (deuterium) and oxygen atoms occupy distinct crystallographic sites with considerable vacancy concentrations on the hydrogen positions (a=363.80(8) pm, c=1323.3(3) pm, c/a=3.637 for LiLaEuH1.26(4)O2 and a=363.43(5) pm, c=1321.6(2) pm, c/a=3.636 for LiLaEuD1.41(2)O2). Moving from the mixed Ln/Eu occupation in LiLnEuH2O2 to Ln=Eu2+, we obtained the mixed‐anionic phase LiEu2H3O, which crystallizes in the same structure type with a=370.04(2) pm, c=1317.32(8) pm and c/a=3.560.Item Open Access Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen(2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.Item Open Access A challenge toward novel quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm) : unraveling synthetic pathways, structures and properties(2022) Ruseikina, Anna V.; Grigoriev, Maxim V.; Solovyov, Leonid A.; Chernyshev, Vladimir A.; Aleksandrovsky, Aleksandr S.; Krylov, Alexander S.; Krylova, Svetlana N.; Shestakov, Nikolai P.; Velikanov, Dmitriy A.; Garmonov, Alexander A.; Matigorov, Alexey V.; Eberle, Marcel A.; Schleid, Thomas; Safin, Damir A.We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20-300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters.Item Open Access Synthesis and crystal structure of the short LnSb2O4Br series (Ln = Eu-Tb) and luminescence properties of Eu3+-doped samples(2020) Goerigk, Felix C.; Paterlini, Veronica; Dorn, Katharina V.; Mudring, Anja-Verena; Schleid, ThomasPale yellow crystals of LnSb2O4Br (Ln = Eu-Tb) were synthesized via high temperature solid-state reactions from antimony sesquioxide, the respective lanthanoid sesquioxides and tribromides. Single-crystal X-ray diffraction studies revealed a layered structure in the monoclinic space group P21/c. In contrast to hitherto reported quaternary lanthanoid(III) halide oxoantimonates(III), in LnSb2O4Br the lanthanoid(III) cations are exclusively coordinated by oxygen atoms in the form of square hemiprisms. These [LnO8]13- polyhedra form layers parallel to (100) by sharing common edges. All antimony(III) cations are coordinated by three oxygen atoms forming ψ1-tetrahedral [SbO3]3- units, which have oxygen atoms in common building up meandering strands along [001] according to {[SbO𝑣2/2O𝑡1/1]-}-1 (v = vertex-sharing, t = terminal). The bromide anions are located between two layers of these parallel running oxoantimonate(III) strands and have no bonding contacts with the Ln3+ cations. Since Sb3+ is known to be an efficient sensitizer for Ln3+ emission, photoluminescence studies were carried out to characterize the optical properties and assess their suitability as light phosphors. Indeed, for both, GdSb2O4Br and TbSb2O4Br doped with about 1.0-1.5 at-% Eu3+ efficient sensitization of the Eu3+ emission could be detected. For TbSb2O4Br, in addition, a remarkably high energy transfer from Tb3+ to Eu3+ could be detected that leads to a substantially increased Eu3+ emission intensity, rendering it an efficient red light emitting material.Item Open Access Synthesis, crystal structure, and optical and magnetic properties of the new quaternary erbium telluride EuErCuTe3 : experiment and calculation(2024) Ruseikina, Anna V.; Grigoriev, Maxim V.; Locke, Ralf J. C.; Chernyshev, Vladimir A.; Garmonov, Alexander A.; Schleid, ThomasThis paper reports for the first time on a new layered magnetic heterometallic erbium telluride EuErCuTe3. Single crystals of the compound were obtained from the elements at 1120 K using CsI as a flux. The crystal structure of EuErCuTe3 was solved in the space group Cmcm (a = 4.3086(3) Å, b = 14.3093(9) Å, and c = 11.1957(7) Å) with the KZrCuS3 structure type. In the orthorhombic structure of erbium telluride, distorted octahedra ([ErTe6]9−) form two-dimensional layers (Er(Te1)2/2e(Te2)4/2k-)∞2, while distorted tetrahedra ([CuTe4]7-) form one-dimensionally connected substructures (Cu(Te1)2/2e(Te2)2/1t5-∞1) along the [100] direction. The distorted octahedra and tetrahedra form parallel two-dimensional layers (CuErTe32-∞2) between which Eu2+ ions are located in a trigonal-prismatic coordination environment (EuTe610-). The trigonal prisms are connected by faces, forming chains (Eu(Te1)2/2(Te2)4/22-∞1) along the [100] direction. Regularities in the variations in structural parameters were established in the series of erbium chalcogenides (EuErCuCh3 with Ch = S, Se, and Te) and tellurides (EuLnCuTe3 with Ln = Gd, Er, and Lu). Ab-initio calculations of the crystal structure, phonon spectrum, and elastic properties of the compound EuErCuTe3 were performed. The types and wavenumbers of fundamental modes were determined, and the involvement of ions in the IR and Raman modes was assessed. The experimental Raman spectra were interpreted. The telluride EuErCuTe3 at temperatures below 4.2 K was ferrimagnetic, as were the sulfide and selenide derivatives (EuErCuCh3 with Ch = S and Se). Its experimental magnetic characteristics were close to the calculated ones. The decrease in the magnetic phase transition temperature in the series of the erbium chalcogenides was discovered.