03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
18 results
Search Results
Item Open Access The Fermi energy as common parameter to describe charge compensation mechanisms : a path to Fermi level engineering of oxide electroceramics(2023) Klein, Andreas; Albe, Karsten; Bein, Nicole; Clemens, Oliver; Creutz, Kim Alexander; Erhart, Paul; Frericks, Markus; Ghorbani, Elaheh; Hofmann, Jan Philipp; Huang, Binxiang; Kaiser, Bernhard; Kolb, Ute; Koruza, Jurij; Kübel, Christian; Lohaus, Katharina N. S.; Rödel, Jürgen; Rohrer, Jochen; Rheinheimer, Wolfgang; De Souza, Roger A.; Streibel, Verena; Weidenkaff, Anke; Widenmeyer, Marc; Xu, Bai-Xiang; Zhang, HongbinChemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering.Item Open Access Magnetic tilting in nematic liquid crystals driven by self‐assembly(2021) Hähsler, Martin; Nádasi, Hajnalka; Feneberg, Martin; Marino, Sebastian; Giesselmann, Frank; Behrens, Silke; Eremin, AlexeySelf‐assembly is one of the crucial mechanisms allowing the design multifunctional materials. Soft hybrid materials contain components of different natures and exhibit competitive interactions which drive self‐organization into structures of a particular function. Here a novel type of a magnetic hybrid material where the molecular tilt can be manipulated through a delicate balance between the topologically‐assisted colloidal self‐assembly of magnetic nanoparticles and the anisotropic molecular interactions in a liquid crystal matrix is demonstrated.Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Distinct specificities of the HEMK2 protein methyltransferase in methylation of glutamine and lysine residues(2024) Weirich, Sara; Ulu, Gizem T.; Chandrasekaran, Thyagarajan T.; Kehl, Jana; Schmid, Jasmin; Dorscht, Franziska; Kublanovsky, Margarita; Levy, Dan; Jeltsch, AlbertThe HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3-R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.Item Open Access Fluent integration of laboratory data into biocatalytic process simulation using EnzymeML, DWSIM, and ontologies(2024) Behr, Alexander S.; Surkamp, Julia; Abbaspour, Elnaz; Häußler, Max; Lütz, Stephan; Pleiss, Jürgen; Kockmann, Norbert; Rosenthal, KatrinThe importance of biocatalysis for ecologically sustainable syntheses in the chemical industry and for applications in everyday life is increasing. To design efficient applications, it is important to know the related enzyme kinetics; however, the measurement is laborious and error-prone. Flow reactors are suitable for rapid reaction parameter screening; here, a novel workflow is proposed including digital image processing (DIP) for the quantification of product concentrations, and the use of structured data acquisition with EnzymeML spreadsheets combined with ontology-based semantic information, leading to rapid and smooth data integration into a simulation tool for kinetics evaluation. One of the major findings is that a flexibly adaptive ontology is essential for FAIR (findability, accessibility, interoperability, reusability) data handling. Further, Python interfaces enable consistent data transfer.Item Open Access CHEMampere : technologies for sustainable chemical production with renewable electricity and CO2, N2, O2, and H2O(2022) Klemm, Elias; Lobo, Carlos M. S.; Löwe, Armin; Schallhart, Verena; Renninger, Stephan; Waltersmann, Lara; Costa, Rémi; Schulz, Andreas; Dietrich, Ralph‐Uwe; Möltner, Lukas; Meynen, Vera; Sauer, Alexander; Friedrich, K. AndreasThe chemical industry must become carbon neutral by 2050, meaning that process‐, energy‐, and product‐related CO2 emissions from fossil sources are completely suppressed. This goal can only be reached by using renewable energy, secondary raw materials, or CO2 as a carbon source. The latter can be done indirectly through the bioeconomy or directly by utilizing CO2 from air or biogenic sources (integrated biorefinery). Until 2030, CO2 waste from fossil‐based processes can be utilized to curb fossil CO2 emissions and reach the turning point of global fossil CO2 emissions. A technology mix consisting of recycling technologies, white biotechnology, and carbon capture and utilization (CCU) technologies is needed to achieve the goal of carbon neutrality. In this context, CHEMampere contributes to the goal of carbon neutrality with electricity‐based CCU technologies producing green chemicals from CO2, N2, O2, and H2O in a decentralized manner. This is an alternative to the e‐Refinery concept, which needs huge capacities of water electrolysis for a centralized CO2 conversion with green hydrogen, whose demand is expected to rise dramatically due to the decarbonization of the energy sector, which would cause a conflict of use between chemistry and energy. Here, CHEMampere's core reactor technologies, that is, electrolyzers, plasma reactors, and ohmic resistance heating of catalysts, are described, and their technical maturity is evaluated for the CHEMampere platform chemicals NH3, NOx, O3, H2O2, H2, CO, and CxHyOz products such as formic acid or methanol. Downstream processing of these chemicals is also addressed by CHEMampere, but it is not discussed here.Item Open Access 3D sub-nanometer analysis of glucose in an aqueous solution by cryo-atom probe tomography(2021) Schwarz, T. M.; Dietrich, C. A.; Ott, J.; Weikum, E. M.; Lawitzki, R.; Solodenko, H.; Hadjixenophontos, E.; Gault, B.; Kästner, J.; Schmitz, G.; Stender, P.Atom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.Item Open Access Unraveling the role of the tyrosine tetrad from the binding site of the epigenetic writer MLL3 in the catalytic mechanism and methylation multiplicity(2022) Blanco-Esperguez, Kevin; Tuñón, Iñaki; Kästner, Johannes; Mendizábal, Fernando; Miranda-Rojas, SebastiánMLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.Item Open Access One‐step thermal gradient‐ and antisolvent‐free crystallization of all‐inorganic perovskites for highly efficient and thermally stable solar cells(2022) Byranvand, Mahdi Malekshahi; Kodalle, Tim; Zuo, Weiwei; Magorian Friedlmeier, Theresa; Abdelsamie, Maged; Hong, Kootak; Zia, Waqas; Perween, Shama; Clemens, Oliver; Sutter‐Fella, Carolin M.; Saliba, MichaelAll‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat‐sensitive hybrid organic–inorganic counterparts. In particular, CsPbI2Br shows the highest potential for developing thermally‐stable perovskite solar cells (PSCs) among all‐inorganic compositions. However, controlling the crystallinity and morphology of all‐inorganic compositions is a significant challenge. Here, a simple, thermal gradient‐ and antisolvent‐free method is reported to control the crystallization of CsPbI2Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin‐coating and annealing to understand and optimize the evolving film properties. This leads to high‐quality perovskite films with micrometer‐scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open‐circuit voltage (VOC) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.Item Unknown PEO infiltration of porous garnet-type lithium-conducting solid electrolyte thin films(2021) Waidha, Aamir Iqbal; Vanita, Vanita; Clemens, OliverComposite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10-7 S cm-1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.