03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen
    (2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.
    Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.
  • Thumbnail Image
    ItemOpen Access
    Cooperative Lewis acid‐1,2,3‐triazolium‐aryloxide catalysis : pyrazolone addition to nitroolefins as entry to diaminoamides
    (2023) Wanner, Daniel M.; Becker, Patrick M.; Suhr, Simon; Wannenmacher, Nick; Ziegler, Slava; Herrmann, Justin; Willig, Felix; Gabler, Julia; Jangid, Khushbu; Schmid, Juliane; Hans, Andreas C.; Frey, Wolfgang; Sarkar, Biprajit; Kästner, Johannes; Peters, René
    Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII-1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII, requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward β,γ’-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.
  • Thumbnail Image
    ItemOpen Access
    A practical and robust zwitterionic cooperative Lewis acid/acetate/benzimidazolium catalyst for direct 1,4‐additions
    (2023) Hans, Andreas C.; Becker, Patrick M.; Haußmann, Johanna; Suhr, Simon; Wanner, Daniel M.; Lederer, Vera; Willig, Felix; Frey, Wolfgang; Sarkar, Biprajit; Kästner, Johannes; Peters, René
    A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4‐additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII, which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N‐Ph‐benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.