03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
2 results
Search Results
Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Hydrosilylation of alkynes under continuous flow using polyurethane‐based monolithic supports with tailored mesoporosity(2022) Acikalin, Hande; Panyam, Pradeep K. R.; Shaikh, Abdul Wasif; Wang, Dongren; Kousik, Shravan R.; Atanasova, Petia; Buchmeiser, Michael R.Non‐porous polyurethane‐based monoliths are prepared under solvent‐induced phase separation conditions. They possess low specific surface areas of 0.15 m2 g-1, pore volumes of 1 µL g-1, and a non‐permanent, solvent‐induced microporosity with pore dimensions ≤1 nm. Mesoporosity can be introduced by varying the monomers and solvents. A tuning of the average solubility parameter of the solvent mixture by increasing the macroporogen content results in a decrease in the volume fraction of micropores from 70% to 40% and an increase in the volume fraction of pores in the range of 1.7-9.6 nm from 22% to 41% with only minor changes in the volume fraction of larger mesopores in the range of 9.6–50 nm. The polymeric monoliths are functionalized with quaternary ammonium groups, which allowed for the immobilization of an ionic liquid that contained the ionic Rh‐catalyst [1‐(pyrid‐2‐yl)‐3‐mesityl)‐imidazol‐2‐ylidene))(η4‐1,5‐cyclooctadiene)Rh(I) tetrafluoroborate]. The supported catalyst is used in the hydrosilylation of 1‐alkynes with dimethylphenylsilane under continuous flow using methyl‐tert‐butyl ether as second liquid transport phase. E/Z‐selectivity in hydrosilylation is compared to the one of the analogous biphasic reactions. The strong increase in Z‐selectivity is attributed to a confinement effect provided by the small mesopores.