03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Magnetic tilting in nematic liquid crystals driven by self‐assembly
    (2021) Hähsler, Martin; Nádasi, Hajnalka; Feneberg, Martin; Marino, Sebastian; Giesselmann, Frank; Behrens, Silke; Eremin, Alexey
    Self‐assembly is one of the crucial mechanisms allowing the design multifunctional materials. Soft hybrid materials contain components of different natures and exhibit competitive interactions which drive self‐organization into structures of a particular function. Here a novel type of a magnetic hybrid material where the molecular tilt can be manipulated through a delicate balance between the topologically‐assisted colloidal self‐assembly of magnetic nanoparticles and the anisotropic molecular interactions in a liquid crystal matrix is demonstrated.
  • Thumbnail Image
    ItemOpen Access
    Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids
    (2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, Sabine
    Covalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.
  • Thumbnail Image
    ItemOpen Access
    Hybrid spintronic materials from conducting polymers with molecular quantum bits
    (2020) Kern, Michal; Tesi, Lorenzo; Neusser, David; Rußegger, Nadine; Winkler, Mario; Allgaier, Alexander; Gross, Yannic M.; Bechler, Stefan; Funk, Hannes S.; Chang, Li‐Te; Schulze, Jörg; Ludwigs, Sabine; Slageren, Joris van
    Hybrid materials consisting of organic semiconductors and molecular quantum bits promise to provide a novel platform for quantum spintronic applications. However, investigations of such materials, elucidating both the electrical and quantum dynamical properties of the same material have never been reported. Here the preparation of hybrid materials consisting of conducting polymers and molecular quantum bits is reported. Organic field‐effect transistor measurements demonstrate that the favorable electrical properties are preserved in the presence of the qubits. Chemical doping introduces charge carriers into the material, and variable‐temperature charge transport measurements reveal the existence of mobile charge carriers at temperatures as low as 15 K. Importantly, quantum coherence of the qubit is shown to be preserved up to temperatures of at least 30 K, that is, in the presence of mobile charge carriers. These results pave the way for employing such hybrid materials in novel molecular quantum spintronic architectures.
  • Thumbnail Image
    ItemOpen Access
    Soft materials for acoustic applications
    (2022) Choi, Eunjin; Fischer, Peer (Prof. Dr.)
    Ultrasound finds wide application in imaging and testing because ultrasound can penetrate tissue and is benign. Gaseous microbubbles strongly scatter ultrasound and are therefore used as contrast agents. Ultrasound responsive materials can be used for many industrial and biomedical applications. Ultrasound can also be used to exert forces and manipulate particles solution and biological cells. In this thesis, material systems are developed for three application areas: 1) models of human organs for the quantitative evaluation of surgical procedures with ultrasound; 2) the fabrication of soft objects by assembling polymeric particles with ultrasound and the acoustic hologram; and 3) the characterization of antibubbles as novel contrast agents that can carry a fluid load. Organ phantoms serve as tools in medical fields to train and plan medical procedures. However, current organ phantoms miss important features or are not realistic. Current models tend to possess a Young’s modulus that is much higher than that of tissue. Furthermore, many of the current models do not show the correct contrast in a medical imaging setting. This thesis presents high fidelity organ phantoms that possess the correct elasticity, compliance, optical appearance, and correct ultrasound contrast. One model is developed for cystoscopy (CY) of the bladder. Another phantom for the transurethral resection of the prostate (TURP). The quality of the phantoms is validated by medical practitioners. For CY, the execution time of the medical practitioners is recorded to completely map the inside of the bladder phantom while localizing tumor models that have been embedded in the bladder wall. For TURP, the quality of the resection is compared with ultrasound imaging before and after the surgical simulation. Parameters are defined to quantify the success of the procedure. The phantoms developed as part of this thesis have received high satisfaction scores from medical practitioners. The parameters reflect the experience of the surgeons. In assembling soft matter, one challenge is that existing 3D printing methods are slow. In contrast, the use of ultrasound patterns shaped with a recently invented acoustic hologram allows objects to be built at once. In this thesis, polydimethylsiloxane (PDMS) particles have been assembled into two-dimensional shapes with ultrasound. To fix the assembly, the PDMS has been physically functionalized with an initiator using swelling. Suitable swelling solutions have been determined based on their solubility. The stability of the physisorbed initiators is evaluated, and the functionalized PDMS particles are fixed via photopolymerization after assembly in aqueous polyethylene glycol dimethacrylate (PEG-DMA) solutions. The fabrication steps can be repeated to increase the thickness of structures that are mechanically stable. The antibubble is an emerging ultrasound contrast agent. It has an inverse form to a conventional bubble in that a substance in the core is surrounded by a gaseous layer. The antibubble is acoustically responsive and, compared to conventional microbubbles, can carry a much greater load. In this thesis, the structure of antibubbles is examined. In particular, the volume of the load is quantified, and the amount of gas per bubble is estimated. The stability of the core substance against diffusion is investigated and shown to be stable for over 11 h.