03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
36 results
Search Results
Item Open Access Chitin/cellulose blend fibers prepared by wet and dry‐wet spinning(2020) Ota, Antje; Beyer, Ronald; Hageroth, Ulrich; Müller, Alexandra; Tomasic, Patricija; Hermanutz, Frank; Buchmeiser, Michael R.We describe the wet and dry‐wet spinning of multifilament cellulosic composite fibers, namely chitin/cellulose fibers. The direct solution process for the two biopolymers based on an ionic liquid as solvent represents an environmentally friendly and alternative technology to the industrially applied viscose and lyocell process. Both cellulose and chitin possess good solubility in 1‐ethyl‐3‐methylimidazolium propionate ([C2C1Im][OPr]) and were spun into multifilament composite fibers. Moreover, for the first time, pure chitin multifilament fibers were obtained by dry‐wet spinning. The effect of chitin addition on the filament properties was investigated and evaluated by microscopic, spectroscopic, and mechanical analyses.Item Open Access High‐performance carbon fibers prepared by continuous stabilization and carbonization of electron beam‐irradiated textile grade polyacrylonitrile fibers(2021) König, Simon; Bauch, Volker; Herbert, Christian; Wego, Andreas; Steinmann, Mark; Frank, Erik; Buchmeiser, Michael R.The manufacturing of high‐performance carbon fibers (CFs) from low‐cost textile grade poly(acrylonitrile) (PAN) homo‐ and copolymers using continuous electron beam (EB) irradiation, stabilization, and carbonization on a kilogram scale is reported. The resulting CFs have tensile strengths of up to 3.1 ± 0.6 GPa and Young's moduli of up to 212 ± 9 GPa, exceeding standard grade CFs such as Toray T300. Additionally, the Weibull strength and modulus, the microstructure, and the morphology of these CFs are determined.Item Open Access Melt-spinning of an intrinsically flame-retardant polyacrylonitrile copolymer(2020) König, Simon; Kreis, Philipp; Herbert, Christian; Wego, Andreas; Steinmann, Mark; Wang, Dongren; Frank, Erik; Buchmeiser, Michael R.Poly(acrylonitrile) (PAN) fibers have two essential drawbacks: they are usually processed by solution-spinning, which is inferior to melt spinning in terms of productivity and costs, and they are flammable in air. Here, we report on the synthesis and melt-spinning of an intrinsically flame-retardant PAN-copolymer with phosphorus-containing dimethylphosphonomethyl acrylate (DPA) as primary comonomer. Furthermore, the copolymerization parameters of the aqueous suspension polymerization of acrylonitrile (AN) and DPA were determined applying both the Fineman and Ross and Kelen and Tüdõs methods. For flame retardancy and melt-spinning tests, multiple PAN copolymers with different amounts of DPA and, in some cases, methyl acrylate (MA) have been synthesized. One of the synthesized PAN-copolymers has been melt-spun with propylene carbonate (PC) as plasticizer; the resulting PAN-fibers had a tenacity of 195 ± 40 MPa and a Young’s modulus of 5.2 ± 0.7 GPa. The flame-retardant properties have been determined by Limiting Oxygen Index (LOI) flame tests. The LOI value of the melt-spinnable PAN was 25.1; it therefore meets the flame retardancy criteria for many applications. In short, the reported method shows that the disadvantage of high comonomer content necessary for flame retardation can be turned into an advantage by enabling melt spinning.Item Open Access Macrocyclization of dienes under confinement with cationic tungsten imido/oxo alkylidene N‐heterocyclic carbene complexes(2023) Ziegler, Felix; Bruckner, Johanna R.; Nowakowski, Michal; Bauer, Matthias; Probst, Patrick; Atwi, Boshra; Buchmeiser, Michael R.Macrocyclization reactions are still challenging due to competing oligomerization, which requires the use of small substrate concentrations. Here, the cationic tungsten imido and tungsten oxo alkylidene N-heterocyclic carbene complexes [[W(N-2,6-Cl2-C6H3)(CHCMe2Ph(OC6F5)(pivalonitrile)(IMes)+ B(ArF)4-] (W1) and [W(O (CHCMe2Ph(OCMe(CF3)2)(IMes)(CH3CN)+ B(ArF)4-] (W2) (IMes=1,3-dimesitylimidazol-2-ylidene; B(ArF)4-=tetrakis(3,5-bis(trifluoromethyl)phenyl borate) have been immobilized inside the pores of ordered mesoporous silica (OMS) with pore diameters of 3.3 and 6.8 nm, respectively, using a pore-selective immobilization protocol. X-ray absorption spectroscopy of W1@OMS showed that even though the catalyst structure is contracted due to confinement by the mesopores, both the oxidation state and structure of the catalyst stayed intact upon immobilization. Catalytic testing with four differently sized α,ω-dienes revealed a dramatically increased macrocyclization (MC) and Z-selectivity of the supported catalysts compared to the homogenous progenitors, allowing high substrate concentrations of 25 mM. With the supported complexes, a maximum increase in MC-selectivity from 27 to 81 % and in Z-selectivity from 17 to 34 % was achieved. In general, smaller mesopores exhibited a stronger confinement effect. A comparison of the two supported tungsten-based catalysts showed that W1@OMS possesses a higher MC-selectivity, while W2@OMS exhibits a higher Z-selectivity which can be rationalized by the structures of the catalysts.Item Open Access Reversible N‐heterocyclic carbene‐induced α‐H abstraction in Tungsten(VI) imido dialkyl dialkoxide complexes(2020) Musso, Janis V.; Benedikter, Mathis J.; Wang, Dongren; Frey, Wolfgang; Altmann, Hagen J.; Buchmeiser, Michael R.The first reversible N‐heterocyclic carbene (NHC) induced α‐H abstraction in tungsten(VI) imido‐dialkyl dialkoxide complexes is reported. Treatment of W(NAr)(CH2Ph)2(OtBu)2 (Ar=2,6‐dichlorophenyl, 2,6‐dimethylphenyl, 2,6‐diisopropylphenyl) with different NHCs leads to the formation of complexes of the type W(NAr)(CHPh)(NHC)(CH2Ph)(OtBu) in excellent isolated yields of up to 96 %. The highly unusual release of the tert‐butoxide ligand as tBuOH in the course of the reaction was observed. The formed alkylidene complexes and tBuOH are in an equilibrium with the NHC and the dialkyl complexes. Reaction kinetics were monitored by 1H NMR spectroscopy. A correlation between the steric and electronic properties of the NHC and the reaction rates was observed. Kinetics of a deuterium‐labeled complex in comparison to its non‐deuterated counterpart revealed the presence of a strong primary kinetic isotope effect (KIE) of 4.2, indicating that α‐H abstraction is the rate‐determining step (RDS) of the reaction.Item Open Access Chromium(VI) bisimido dichloro, bisimido alkylidene, and chromium(V) bisimido iodo N‐heterocyclic carbene complexes(2020) Panyam, Pradeep K. R.; Stöhr, Laura; Wang, Dongren; Frey, Wolfgang; Buchmeiser, Michael R.Reaction of CrCl2(N-tBu)2 with 1,3-dimethylimidazol-2-ylidene (IMe), 1,3-dimethyl-4,5-dichloroimidazol-2-ylidene (IMeCl2), 1,3-di(2-propyl)imidazol-2-ylidene (IPr), 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-(2-Pr)2C6H3)imidazol-2-ylidene (IDipp) yields the corresponding N-heterocyclic carbene (NHC) adducts CrCl2(IMe)(N-tBu)2 (1), CrCl2(IMeCl2)(N-tBu)2 (2), CrCl2(IPr)(N-tBu)2 (3), CrCl2(IMes)(N-tBu)2 (4) and CrCl2(IDipp)(N-tBu)2 (5). Likewise, reaction of CrCl2(N-2,6-(2-Pr)2C6H3)2 and CrCl2(N-adamantyl)2 with IMes yields CrCl2(N-2,6-(2-Pr)2C6H3)2(IMes) (6) and CrCl2(N-adamantyl)2(IMes) (7), respectively. Reaction of CrCl2(N-tBu)2 with the bidentate NHCs 1-R-3-(1-(2-LiO-C6H4))imidazol-2-ylidene yields the corresponding pentacoordinated Cr(VI) complexes CrCl2(1-R-3-(1-(2-O-C6H4))imidazol-2-ylidene)2C6H3)2(IMes) (R = 2,4,6-(CH3)3C6H2, 8), (R = tBu, 9), (R = 2-phenyl-C6H4, 10). Reaction of the chromium(VI) complex Cr(N-2,6-(2-Pr)2-C6H3)2(CH2C(CH3)3)2 with 1,3-dimethylimidazol-2-ylidene·AgI yields the bimetallic silver adduct of the chromium alkylidene complex (11) along with the tetrahedral chromium(V) complex CrI(N-2,6-(2-Pr)2-C6H3)2(1,3-dimethylimidazol-2-ylidene) (12). Compounds 1-4, 7, 9-12 were characterized by single-crystal X-ray analysis. Finally, the chromium(VI) bisimido-amido complexes 13-14 bearing the N-6-(2-(diethylboryl)phenyl)pyridyl-2-yl-motif are reported.Item Open Access High‐performance magnesium‐sulfur batteries based on a sulfurated poly(acrylonitrile) cathode, a borohydride electrolyte, and a high‐surface area magnesium anode(2020) Wang, Peiwen; Trück, Janina; Niesen, Stefan; Kappler, Julian; Küster, Kathrin; Starke, Ulrich; Ziegler, Felix; Hintennach, Andreas; Buchmeiser, Michael R.Post‐lithium‐ion battery technology is considered a key element of future energy storage and management. Apart from high gravimetric and volumetric energy densities, economic, ecologic and safety issues become increasingly important. In that regards, both the anode and cathode materials must be easily available, recyclable, non‐toxic and safe, which renders magnesium‐sulfur (Mg-S) batteries a promising choice. Herein, we present Mg-S cells based on a sulfurated poly(acrylonitrile) composite cathode (SPAN), together with a halogen‐free electrolyte containing both Mg[BH4]2 and Li[BH4] in diglyme and a high‐specific surface area magnesium anode based on Rieke magnesium powder. These cells deliver discharge capacities of 1400 and 800 mAh/gsulfur with >99 % Coulombic efficiency at 0.1 C and 0.5 C, respectively, and are stable over at least 300 cycles. Energy densities are 470 and 400 Wh/kgsulfur at 0.1 C and 0.5 C, respectively. Rate tests carried out between 0.1 C and 2 C demonstrate good rate capability of the cells. Detailed mechanistic studies based on X‐ray photoelectron spectroscopy and electric impedance spectroscopy are presented.Item Open Access Sulfurized polypropylene as low‐cost cathode material for high‐capacity lithium‐sulfur batteries(2022) Du, Qian; Benedikter, Mathis; Küster, Kathrin; Acartürk, Tolga; Starke, Ulrich; Hoslauer, Jean‐Louis; Schleid, Thomas; Buchmeiser, Michael R.Among ‘beyond lithium ion’ energy storage, lithium sulfur (Li-S) batteries are one of the most promising technologies, as a result of the potential for high theoretical energy capacity at low cost. A key obstacle in exploiting the vast potential of Li-S batteries is the formation of soluble polysulfide species. Here, we report sulfurized polypropylene (S/PP‐500) synthesized in one‐step by reacting polypropylene (PP) with sulfur as a new polysulfide shuttle‐free cathode material for Li-S batteries. It exhibits a reversible capacity as high as 1000 mAh/gsulfur at 0.1 C and a sulfur loading of up to 68 wt%, which in turn allows for high sulfur loadings up to 47 % in the final cathode. The low‐cost starting materials together with the simple synthetic procedure and the good electrochemical performance in combination with a commercially available eslectrolyte make the S/PP‐500 a very promising cathode material for Li‐S batteries.Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Method of manufacturing structural, optically transparent glass fiber-reinforced polymers (tGFRP) using infusion techniques with epoxy resin systems and E-glass fabrics(2023) Heudorfer, Klaus; Bauer, Johannes; Caydamli, Yavuz; Gompf, Bruno; Take, Jens; Buchmeiser, Michael R.; Middendorf, PeterRecently, fiber-reinforced, epoxy-based, optically transparent composites were successfully produced using resin transfer molding (RTM) techniques. Generally, the production of structural, optically transparent composites is challenging since it requires the combination of a very smooth mold surface with a sufficient control of resin flow that leads to no visible voids. Furthermore, it requires a minimum deviation of the refractive indices (RIs) of the matrix polymer and the reinforcement fibers. Here, a new mold design is described and three plates of optically transparent glass fiber-reinforced polymers (tGFRP) with reproducible properties as well as high fiber volume fractions were produced using the RTM process and in situ polymerization of an epoxy resin system enclosing E-glass fiber textiles. Their mechanical (flexural), microstructural (fiber volume fraction, surface roughness, etc.), thermal (DSC, TGA, etc.), and optical (dispersion curves of glass fibers and polymer as well as transmission over visible spectra curves of the tGFRP at varying tempering states) properties were evaluated. The research showed improved surface quality and good transmission data for samples manufactured by a new Optical-RTM setup compared to a standard RTM mold. The maximum transmission was reported to be ≈74%. In addition, no detectable voids were found in these samples. Furthermore, a flexural modulus of 23.49 ± 0.64 GPa was achieved for the Optical-RTM samples having a fiber volume fraction of ≈42%.