03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
Search Results
Item Open Access Reversible switching and stability of the epigenetic memory system in bacteria(2022) Graf, Dimitri; Laistner, Laura; Klingel, Viviane; Radde, Nicole E.; Weirich, Sara; Jeltsch, AlbertIn previous work, we have developed a DNA methylation-based epigenetic memory system that operates in Escherichia coli to detect environmental signals, trigger a phenotypic switch of the cells and store the information in DNA methylation. The system is based on the CcrM DNA methyltransferase and a synthetic zinc finger (ZnF4), which binds DNA in a CcrM methylation-dependent manner and functions as a repressor for a ccrM gene expressed together with an egfp reporter gene. Here, we developed a reversible reset for this memory system by adding an increased concentration of ZnSO4 to the bacterial cultivation medium and demonstrate that one bacterial culture could be reversibly switched ON and OFF in several cycles. We show that a previously developed differential equation model of the memory system can also describe the new data. Then, we studied the long-term stability of the ON-state of the system over approximately 100 cell divisions showing a gradual loss of ON-state signal starting after 4 days of cultivation that is caused by individual cells switching from an ON- into the OFF-state. Over time, the methylation of the ZnF4-binding sites is not fully maintained leading to an increased OFF switching probability of cells, because stronger binding of ZnF4 to partially demethylated operator sites leads to further reductions in the cellular concentrations of CcrM. These data will support future design to further stabilize the ON-state and enforce the binary switching behaviour of the system. Together with the development of a reversible OFF switch, our new findings strongly increase the capabilities of bacterial epigenetic biosensors.Item Open Access Flanking sequences influence the activity of TET1 and TET2 methylcytosine dioxygenases and affect genomic 5hmC patterns(2022) Adam, Sabrina; Bräcker, Julia; Klingel, Viviane; Osteresch, Bernd; Radde, Nicole E.; Brockmeyer, Jens; Bashtrykov, Pavel; Jeltsch, AlbertTET dioxygenases convert 5-methylcytosine (5mC) preferentially in a CpG context into 5-hydroxymethylcytosine (5hmC) and higher oxidized forms, thereby initiating DNA demethylation, but details regarding the effects of the DNA sequences flanking the target 5mC site on TET activity are unknown. We investigated oxidation of libraries of DNA substrates containing one 5mC or 5hmC residue in randomized sequence context using single molecule readout of oxidation activity and sequence and show pronounced 20 and 70-fold flanking sequence effects on the catalytic activities of TET1 and TET2, respectively. Flanking sequence preferences were similar for TET1 and TET2 and also for 5mC and 5hmC substrates. Enhanced flanking sequence preferences were observed at non-CpG sites together with profound effects of flanking sequences on the specificity of TET2. TET flanking sequence preferences are reflected in genome-wide and local patterns of 5hmC and DNA demethylation in human and mouse cells indicating that they influence genomic DNA modification patterns in combination with locus specific targeting of TET enzymes.