03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
4 results
Search Results
Item Open Access Asymmetric Rh diene catalysis under confinement : isoxazole ring‐contraction in mesoporous solids(2024) Marshall, Max; Dilruba, Zarfishan; Beurer, Ann‐Katrin; Bieck, Kira; Emmerling, Sebastian; Markus, Felix; Vogler, Charlotte; Ziegler, Felix; Fuhrer, Marina; Liu, Sherri S. Y.; Kousik, Shravan R.; Frey, Wolfgang; Traa, Yvonne; Bruckner, Johanna R.; Plietker, Bernd; Buchmeiser, Michael R.; Ludwigs, Sabine; Naumann, Stefan; Atanasova, Petia; Lotsch, Bettina V.; Zens, Anna; Laschat, SabineCovalent immobilization of chiral dienes in mesoporous solids for asymmetric heterogeneous catalysis is highly attractive. In order to study confinement effects in bimolecular vs monomolecular reactions, a series of pseudo‐C2‐symmetrical tetrahydropentalenes was synthesized and immobilized via click reaction on different mesoporous solids (silica, carbon, covalent organic frameworks) and compared with homogeneous conditions. Two types of Rh‐catalyzed reactions were studied: (a) bimolecular nucleophilic 1,2‐additions of phenylboroxine to N‐tosylimine and (b) monomolecular isomerization of isoxazole to 2H‐azirne. Polar support materials performed better than non‐polar ones. Under confinement, bimolecular reactions showed decreased yields, whereas yields in monomolecular reactions were only little affected. Regarding enantioselectivity the opposite trend was observed, i. e. effective enantiocontrol for bimolecular reactions but only little control for monomolecular reactions was found.Item Open Access Sulfur‐composites derived from poly(acrylonitrile) and poly(vinylacetylene) : a comparative study on the role of pyridinic and thioamidic nitrogen(2023) Kappler, Julian; Klostermann, Sina V.; Lange, Pia L.; Dyballa, Michael; Veith, Lothar; Schleid, Thomas; Weil, Tanja; Kästner, Johannes; Buchmeiser, Michael R.Sulfurized poly(acrylonitrile) (SPAN) is a prominent example of a highly cycle stable and rate capable sulfur/polymer composite, which is solely based on covalently bound sulfur. However, so far no in‐depth study on the influence of nitrogen in the carbonaceous backbone, to which sulfur in the form of thioketones and poly(sulfides) is attached, exists. Herein, we investigated the role of nitrogen by comparing sulfur/polymer composites derived from nitrogen‐containing poly(acrylonitrile) (PAN) and nitrogen‐free poly(vinylacetylene) (PVac). Results strongly indicate the importance of a nitrogen‐rich, aromatic carbon backbone to ensure full addressability of the polymer‐bound sulfur and its reversible binding to the aromatic backbone, even at high current rates. This study also presents key structures, which are crucial for highly cycle and rate stable S‐composites.Item Open Access Structure evolution in polyethylene‐derived carbon fiber using a combined electron beam‐stabilization‐sulphurization approach(2021) Frank, Erik; Muks, Erna; Ota, Antje; Herrmann, Thomas; Hunger, Michael; Buchmeiser, Michael R.A new approach is described for the production of poly(ethylene) (PE) derived carbon fibers (CFs) that entails the melt spinning of PE fibers from a suitable precursor, their cross-linking by electron beam (EB) treatment, and sulphurization with elemental sulphur (S8), followed by pyrolysis and carbonization. Instead of focusing on mechanical properties, analysis of CF structure formation during all process steps is carried out by different techniques comprising solid-state nuclear magnetic resonance spectroscopy, thermogravimetric analysis coupled to mass spectrometry/infrared spectroscopy, elemental analysis, energy dispersive X-ray scattering, scanning electron microscopy, Raman spectroscopy, and wide-angle X-ray diffraction. A key step in structure formation is the conversion of PE into poly(thienothiophene)s during sulphurization; these species are stabile under inert gas up to 700 °C as confirmed by Raman analysis. Above this temperature, they condense into poly(napthathienophene)s, which are then converted into graphite-type structures during pyrolysis.Item Open Access Cationic molybdenum imido alkylidene N‐heterocyclic carbene complexes confined in mesoporous silica : tuning transition states towards Z‐selective ring‐opening cross‐metathesis(2022) Goldstein, Elizabeth L.; Ziegler, Felix; Beurer, Ann‐Katrin; Traa, Yvonne; Bruckner, Johanna R.; Buchmeiser, Michael R.We recently reported a method for selective macro(mono)cyclization of dienes utilizing catalysts confined inside the pores of mesoporous silica, which we believe occurs due to suppression of oligomerization due to pore size. We hypothesized, however, that the system of cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) catalysts immobilized selectively inside the mesopores of silica materials could address much more subtle selectivity differences, such as E/Z selectivity in ring‐opening/cross‐metathesis (ROCM). Upon investigation, we observed that surface‐bound cationic molybdenum imido alkylidene NHC catalysts indeed display an increased Z‐selectivity, especially during the early stages of the reaction. This effect was present when the catalyst was confined inside a pore, as well as when the catalyst was bound to non‐porous silica, which led us to conclude it is an effect caused by the catalyst being bound directly to the surface of a silica material where the proximity of the catalyst to the surface governs the transition state. Kinetic investigations revealed that significant post‐metathesis olefin isomerization occurs, the amount of which seems to be governed by the rate of diffusion of the product away from the active catalyst, with smaller pore sizes resulting in higher Z‐selectivity at higher conversion, attributable to faster diffusion of the product out of the pore than diffusion back into the pore.