03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
2 results
Search Results
Item Open Access 3D sub-nanometer analysis of glucose in an aqueous solution by cryo-atom probe tomography(2021) Schwarz, T. M.; Dietrich, C. A.; Ott, J.; Weikum, E. M.; Lawitzki, R.; Solodenko, H.; Hadjixenophontos, E.; Gault, B.; Kästner, J.; Schmitz, G.; Stender, P.Atom Probe Tomography (APT) is currently a well-established technique to analyse the composition of solid materials including metals, semiconductors and ceramics with up to near-atomic resolution. Using an aqueous glucose solution, we now extended the technique to frozen solutions. While the mass signals of the common glucose fragments CxHy and CxOyHz overlap with (H2O)nH from water, we achieved stoichiometrically correct values via signal deconvolution. Density functional theory (DFT) calculations were performed to investigate the stability of the detected pyranose fragments. This paper demonstrates APT’s capabilities to achieve sub-nanometre resolution in tracing whole glucose molecules in a frozen solution by using cryogenic workflows. We use a solution of defined concentration to investigate the chemical resolution capabilities as a step toward the measurement of biological molecules. Due to the evaporation of nearly intact glucose molecules, their position within the measured 3D volume of the solution can be determined with sub-nanometre resolution. Our analyses take analytical techniques to a new level, since chemical characterization methods for cryogenically-frozen solutions or biological materials are limited.Item Open Access Unraveling the role of the tyrosine tetrad from the binding site of the epigenetic writer MLL3 in the catalytic mechanism and methylation multiplicity(2022) Blanco-Esperguez, Kevin; Tuñón, Iñaki; Kästner, Johannes; Mendizábal, Fernando; Miranda-Rojas, SebastiánMLL3, also known as KMT2C, is a lysine mono-methyltransferase in charge of the writing of an epigenetic mark on lysine 4 from histone 3. The catalytic site of MLL3 is composed of four tyrosines, namely, Y44, Y69, Y128, and Y130. Tyrosine residues are highly conserved among lysine methyltransferases’ catalytic sites, although their complete function is still unclear. The exploration of how modifications on these residues from the enzymatic machinery impact the enzymatic activity of MLL3 could shed light transversally into the inner functioning of enzymes with similar characteristics. Through the use of QMMM calculations, we focus on the effect of the mutation of each tyrosine from the catalytic site on the enzymatic activity and the product specificity in the current study. While we found that the mutations of Y44 and Y128 by phenylalanine inactivated the enzyme, the mutation of Y128 by alanine reactivated the enzymatic activity of MLL3. Moreover, according to our models, the Y128A mutant was even found to be capable of di- and tri-methylate lysine 4 from histone 3, what would represent a gain of function mutation, and could be responsible for the development of diseases. Finally, we were able to establish the inactivation mechanism, which involved the use of Y130 as a water occlusion structure, whose conformation, once perturbed by its mutation or Y128 mutant, allows the access of water molecules that sequester the electron pair from lysine 4 avoiding its methylation process and, thus, increasing the barrier height.