03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
4 results
Search Results
Item Open Access On the thermal dimorphy of the strontium perrhenate Sr[ReO4]2(2024) Conrad, Maurice; Bette, Sebastian; Dinnebier, Robert E.; Schleid, ThomasHygroscopic single crystals of a new hexagonal high‐temperature modification of Sr[ReO4]2 were prepared from a melt of Sr[ReO4]2 ⋅ H2O and SrCl2 ⋅ 6 H2O. The structure analysis of the obtained crystals by X‐ray diffraction revealed that the title compound crystallizes in the ThCd[MoO4]3‐type structure with the hexagonal space group P63/m and the lattice parameters a=1023.81(7) pm and c=646.92(4) pm (c/a=0.632) for Z=2 in its quenchable high‐temperature form. Two crystallographically independent Sr2+ cations are coordinated by oxygen atoms forming either octahedra or tricapped trigonal prisms, whereas the Re7+ cations are found in the centers of discrete tetrahedral meta‐perrhenate units [ReO4]-. Temperature‐dependent in‐situ PXRD studies of dry powder samples of Sr[ReO4]2 exhibited its thermal dimorphy with a phase‐transition temperature at 500-550 °C from literature‐known m‐Sr[ReO4]2 into the newly discovered h‐Sr[ReO4]2 (hexagonal).Item Open Access Cuttlebone-like V2O5 nanofibre scaffolds - advances in structuring cellular solids(2017) Knöller, Andrea; Runčevski, Tomče; Dinnebier, Robert E.; Bill, Joachim; Burghard, ZaklinaItem Open Access Li4Ln[PS4]2Cl : chloride-containing lithium thiophosphates with lanthanoid participation (Ln = Pr, Nd and Sm)(2023) Lange, Pia L.; Bette, Sebastian; Strobel, Sabine; Dinnebier, Robert E.; Schleid, ThomasThe synthesis and structural analysis of three new chloride-containing lithium thiophosphates(V) Li4Ln[PS4]2Cl with trivalent lanthanoids (Ln = Pr, Nd and Sm) are presented and discussed. Single crystals of Li4Sm[PS4]2Cl were obtained and used for crystal structure determination by applying X-ray diffraction. The other compounds were found to crystallize isotypically in the monoclinic space group C2/c. Thus, Li4Sm[PS4]2Cl (a = 2089.31(12) pm, b = 1579.69(9) pm, c = 1309.04(8) pm, β = 109.978(3)°, Z = 12) was used as a representative model to further describe the crystal structure in detail since Li4Pr[PS4]2Cl and Li4Nd[PS4]2Cl were confirmed to be isotypic using powder X-ray diffraction measurements (PXRD). In all cases, a trigonal structure in the space group R3̲ (e.g., a = 1579.67(9) pm, c = 2818.36(16) pm, c/a = 1.784, Z = 18, for Li4Sm[PS4]2Cl) displaying almost identical building units worked initially misleadingly. The structure refinement of Li4Sm[PS4]2Cl revealed bicapped trigonal prisms of sulfur atoms coordinating the two crystallographically distinct (Sm1)3+ and (Sm2)3+ cations, which are further coordinated by four anionic [PS4]3- tetrahedra. The compounds also contain chloride anions residing within channel-like pores made of [PS4]3- units. Eight different sites for Li+ cations were identified with various coordination environments (C.N. = 4-6) with respect to chlorine and sulfur. EDXS measurements supported the stoichiometric formula of Li4Ln[PS4]2Cl, and diffuse reflectance spectroscopy revealed optical band gaps of 2.69 eV, 3.52 eV, and 3.49 eV for Li4Sm[PS4]2Cl, Li4Nd[PS4]2Cl, and Li4Pr[PS4]2Cl, respectively. The activation energy for Li+-cation mobility in Li4Sm[PS4]2Cl was calculated as Ea(Li+) = 0.88 eV using BVEL, which indicates potential as a Li+-cation conductor.Item Open Access Differences in electrochemistry between fibrous SPAN and fibrous S/C cathodes relevant to cycle stability and capacity(2017) Warneke, Sven; Eusterholz, Michael; Zenn, Roland K.; Hintennach, Andreas; Dinnebier, Robert E.; Buchmeiser, Michael R.Two different Li/S cathodes are compared in terms of capacity (mA.h.gsulfur-1) and intermediates during discharge and charge. One cathode material is based on fibrous SPAN, a sulfur-containing material obtained via the thermal conversion of poly(acrylonitrile), PAN, in the presence of sulfur. In this material, sulfur is covalently bound to the polymeric backbone. The second cathode material is based on porous activated carbon fibers (ACFs) with elemental sulfur embedded inside the ACFs’ micropores. Cyclic voltammetry clearly indicates different discharge and charge chemistry of the two materials. While S-containing ACFs show the expected redox-chemistry of sulfur, SPAN does not form long-chain polysulfides during discharge; instead, sulfide is chopped off the polymer-bound sulfur chains to directly form Li2S. The high reversibility of this process accounts for both the high cycle stability and capacity of SPAN-based cathode materials.