03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
3 results
Search Results
Item Open Access On the thermal dimorphy of the strontium perrhenate Sr[ReO4]2(2024) Conrad, Maurice; Bette, Sebastian; Dinnebier, Robert E.; Schleid, ThomasHygroscopic single crystals of a new hexagonal high‐temperature modification of Sr[ReO4]2 were prepared from a melt of Sr[ReO4]2 ⋅ H2O and SrCl2 ⋅ 6 H2O. The structure analysis of the obtained crystals by X‐ray diffraction revealed that the title compound crystallizes in the ThCd[MoO4]3‐type structure with the hexagonal space group P63/m and the lattice parameters a=1023.81(7) pm and c=646.92(4) pm (c/a=0.632) for Z=2 in its quenchable high‐temperature form. Two crystallographically independent Sr2+ cations are coordinated by oxygen atoms forming either octahedra or tricapped trigonal prisms, whereas the Re7+ cations are found in the centers of discrete tetrahedral meta‐perrhenate units [ReO4]-. Temperature‐dependent in‐situ PXRD studies of dry powder samples of Sr[ReO4]2 exhibited its thermal dimorphy with a phase‐transition temperature at 500-550 °C from literature‐known m‐Sr[ReO4]2 into the newly discovered h‐Sr[ReO4]2 (hexagonal).Item Open Access Sulfurized polypropylene as low‐cost cathode material for high‐capacity lithium‐sulfur batteries(2022) Du, Qian; Benedikter, Mathis; Küster, Kathrin; Acartürk, Tolga; Starke, Ulrich; Hoslauer, Jean‐Louis; Schleid, Thomas; Buchmeiser, Michael R.Among ‘beyond lithium ion’ energy storage, lithium sulfur (Li-S) batteries are one of the most promising technologies, as a result of the potential for high theoretical energy capacity at low cost. A key obstacle in exploiting the vast potential of Li-S batteries is the formation of soluble polysulfide species. Here, we report sulfurized polypropylene (S/PP‐500) synthesized in one‐step by reacting polypropylene (PP) with sulfur as a new polysulfide shuttle‐free cathode material for Li-S batteries. It exhibits a reversible capacity as high as 1000 mAh/gsulfur at 0.1 C and a sulfur loading of up to 68 wt%, which in turn allows for high sulfur loadings up to 47 % in the final cathode. The low‐cost starting materials together with the simple synthetic procedure and the good electrochemical performance in combination with a commercially available eslectrolyte make the S/PP‐500 a very promising cathode material for Li‐S batteries.Item Open Access Li4Ln[PS4]2Cl : chloride-containing lithium thiophosphates with lanthanoid participation (Ln = Pr, Nd and Sm)(2023) Lange, Pia L.; Bette, Sebastian; Strobel, Sabine; Dinnebier, Robert E.; Schleid, ThomasThe synthesis and structural analysis of three new chloride-containing lithium thiophosphates(V) Li4Ln[PS4]2Cl with trivalent lanthanoids (Ln = Pr, Nd and Sm) are presented and discussed. Single crystals of Li4Sm[PS4]2Cl were obtained and used for crystal structure determination by applying X-ray diffraction. The other compounds were found to crystallize isotypically in the monoclinic space group C2/c. Thus, Li4Sm[PS4]2Cl (a = 2089.31(12) pm, b = 1579.69(9) pm, c = 1309.04(8) pm, β = 109.978(3)°, Z = 12) was used as a representative model to further describe the crystal structure in detail since Li4Pr[PS4]2Cl and Li4Nd[PS4]2Cl were confirmed to be isotypic using powder X-ray diffraction measurements (PXRD). In all cases, a trigonal structure in the space group R3̲ (e.g., a = 1579.67(9) pm, c = 2818.36(16) pm, c/a = 1.784, Z = 18, for Li4Sm[PS4]2Cl) displaying almost identical building units worked initially misleadingly. The structure refinement of Li4Sm[PS4]2Cl revealed bicapped trigonal prisms of sulfur atoms coordinating the two crystallographically distinct (Sm1)3+ and (Sm2)3+ cations, which are further coordinated by four anionic [PS4]3- tetrahedra. The compounds also contain chloride anions residing within channel-like pores made of [PS4]3- units. Eight different sites for Li+ cations were identified with various coordination environments (C.N. = 4-6) with respect to chlorine and sulfur. EDXS measurements supported the stoichiometric formula of Li4Ln[PS4]2Cl, and diffuse reflectance spectroscopy revealed optical band gaps of 2.69 eV, 3.52 eV, and 3.49 eV for Li4Sm[PS4]2Cl, Li4Nd[PS4]2Cl, and Li4Pr[PS4]2Cl, respectively. The activation energy for Li+-cation mobility in Li4Sm[PS4]2Cl was calculated as Ea(Li+) = 0.88 eV using BVEL, which indicates potential as a Li+-cation conductor.