03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Dynamic ultrasound projector controlled by light
    (2022) Ma, Zhichao; Joh, Hyungmok; Fan, Donglei Emma; Fischer, Peer
    Dynamic acoustic wavefront control is essential for many acoustic applications, including biomedical imaging and particle manipulation. Conventional methods are either static or in the case of phased transducer arrays are limited to a few elements and hence limited control. Here, a dynamic acoustic wavefront control method based on light patterns that locally trigger the generation of microbubbles is introduced. As a small gas bubble can effectively stop ultrasound transmission in a liquid, the optical images are used to drive a short electrolysis and form microbubble patterns. The generation of microbubbles is controlled by structured light projection at a low intensity of 65 mW cm-2 and only requires about 100 ms. The bubble pattern is thus able to modify the wavefront of acoustic waves from a single transducer. The method is employed to realize an acoustic projector that can generate various acoustic images and patterns, including multiple foci and acoustic phase gradients. Hydrophone scans show that the acoustic field after the modulation by the microbubble pattern forms according to the prediction. It is believed that combining a versatile optical projector to realize an ultrasound projector is a general scheme, which can benefit a multitude of applications based on dynamic acoustic fields.
  • Thumbnail Image
    ItemOpen Access
    Spatial ultrasound modulation by digitally controlling microbubble arrays
    (2020) Ma, Zhichao; Melde, Kai; Athanassiadis, Athanasios G.; Schau, Michael; Richter, Harald; Qiu, Tian; Fischer, Peer
    Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.
  • Thumbnail Image
    ItemOpen Access
    Soft liver phantom with a hollow biliary system
    (2021) Tan, Xiangzhou; Li, Dandan; Jeong, Moonkwang; Yu, Tingting; Ma, Zhichao; Afat, Saif; Grund, Karl-Enrst; Qiu, Tian
    Hepatobiliary interventions are regarded as difficult minimally-invasive procedures that require experience and skills of physicians. To facilitate the surgical training, we develop a soft, high-fidelity and durable liver phantom with detailed morphology. The phantom is anatomically accurate and feasible for the multi-modality medical imaging, including computer tomography (CT), ultrasound, and endoscopy. The CT results show that the phantom resembles the detailed anatomy of real livers including the biliary ducts, with a spatial root mean square error (RMSE) of 1.7 ± 0.7 mm and 0.9 ± 0.2 mm for the biliary duct and the liver outer shape, respectively. The sonographic signals and the endoscopic appearance highly mimic those of the real organ. An electric sensing system was developed for the real-time quantitative tracking of the transhepatic puncturing needle. The fabrication method herein is accurate and reproducible, and the needle tracking system offers a robust and general approach to evaluate the centesis outcome.
  • Thumbnail Image
    ItemOpen Access
    Dynamic acoustic levitator based on subwavelength aperture control
    (2021) Lu, Xiaolong; Twiefel, Jens; Ma, Zhichao; Yu, Tingting; Wallaschek, Jörg; Fischer, Peer
    Acoustic levitation provides a means to achieve contactless manipulation of fragile materials and biological samples. Most acoustic levitators rely on complex electronic hardware and software to shape the acoustic field and realize their dynamic operation. Here, the authors introduce a dynamic acoustic levitator that is based on mechanically controlling the opening and (partial) closing of subwavelength apertures. This simple approach relies on the use of a single ultrasonic transducer and is shown to permit the facile and reliable manipulation of a variety targets ranging from solid particles, to fluid and ferrofluidic drops. Experimental observations agree well with numerical simulations of the Gor'kov potential. Remarkably, this system even enables the generation of time‐varying potentials and induces oscillatory and rotational motion in the levitated objects via a feedback mechanism between the trapped object and the trapping potential. This is shown to result in long distance translation, in‐situ rotation and self‐modulated oscillation of the trapped particles. In addition, dense ferrofluidic droplets are levitated and transformed inside the levitator. Controlling subwavelength apertures opens the possibility to realize simple powerful levitators that nevertheless allow for the versatile dynamic manipulation of levitated matter.