03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
17 results
Search Results
Item Open Access Designing covalent organic framework‐based light‐driven microswimmers toward therapeutic applications(2023) Sridhar, Varun; Yildiz, Erdost; Rodríguez‐Camargo, Andrés; Lyu, Xianglong; Yao, Liang; Wrede, Paul; Aghakhani, Amirreza; Akolpoglu, Birgul M.; Podjaski, Filip; Lotsch, Bettina V.; Sitti, MetinWhile micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light‐driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP‐PDA‐COF sub‐micrometer particles and texturally nanoporous, micrometer‐sized TpAzo‐COF particles are described and compared as light‐driven microrobots. They can be used as highly efficient visible‐light‐driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real‐time visualization of the drug‐loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.Item Open Access Dynamic ultrasound projector controlled by light(2022) Ma, Zhichao; Joh, Hyungmok; Fan, Donglei Emma; Fischer, PeerDynamic acoustic wavefront control is essential for many acoustic applications, including biomedical imaging and particle manipulation. Conventional methods are either static or in the case of phased transducer arrays are limited to a few elements and hence limited control. Here, a dynamic acoustic wavefront control method based on light patterns that locally trigger the generation of microbubbles is introduced. As a small gas bubble can effectively stop ultrasound transmission in a liquid, the optical images are used to drive a short electrolysis and form microbubble patterns. The generation of microbubbles is controlled by structured light projection at a low intensity of 65 mW cm-2 and only requires about 100 ms. The bubble pattern is thus able to modify the wavefront of acoustic waves from a single transducer. The method is employed to realize an acoustic projector that can generate various acoustic images and patterns, including multiple foci and acoustic phase gradients. Hydrophone scans show that the acoustic field after the modulation by the microbubble pattern forms according to the prediction. It is believed that combining a versatile optical projector to realize an ultrasound projector is a general scheme, which can benefit a multitude of applications based on dynamic acoustic fields.Item Open Access Soft urinary bladder phantom for endoscopic training(2021) Choi, Eunjin; Waldbillig, Frank; Jeong, Moonkwang; Li, Dandan; Goyal, Rahul; Weber, Patricia; Miernik, Arkadiusz; Grüne, Britta; Hein, Simon; Suarez-Ibarrola, Rodrigo; Kriegmair, Maximilian Christian; Qiu, TianBladder cancer (BC) is the main disease in the urinary tract with a high recurrence rate and it is diagnosed by cystoscopy (CY). To train the CY procedures, a realistic bladder phantom with correct anatomy and physiological properties is highly required. Here, we report a soft bladder phantom (FlexBlad) that mimics many important features of a human bladder. Under filling, it shows a large volume expansion of more than 300% with a tunable compliance in the range of 12.2 ± 2.8 - 32.7 ± 5.4 mL cmH2O-1 by engineering the thickness of the bladder wall. By 3D printing and multi-step molding, detailed anatomical structures are represented on the inner bladder wall, including sub-millimeter blood vessels and reconfigurable bladder tumors. Endoscopic inspection and tumor biopsy were successfully performed. A multi-center study was carried out, where two groups of urologists with different experience levels executed consecutive CYs in the phantom and filled in questionnaires. The learning curves reveal that the FlexBlad has a positive effect in the endourological training across different skill levels. The statistical results validate the usability of the phantom as a valuable educational tool, and the dynamic feature expands its use as a versatile endoscopic training platform.Item Open Access Light- and magnetically actuated FePt microswimmers(2021) Kadiri, Vincent Mauricio; Günther, Jan-Philipp; Kottapalli, Sai Nikhilesh; Goyal, Rahul; Peter, Florian; Alarcón-Correa, Mariana; Son, Kwanghyo; Barad, Hannah-Noa; Börsch, Michael; Fischer, PeerExternally controlled microswimmers offer prospects for transport in biological research and medical applications. This requires biocompatibility of the swimmers and the possibility to tailor their propulsion mechanisms to the respective low Reynolds number environment. Here, we incorporate low amounts of the biocompatible alloy of iron and platinum (FePt) in its L10 phase in microstructures by a versatile one-step physical vapor deposition process. We show that the hard magnetic properties of L10 FePt are beneficial for the propulsion of helical micropropellers with rotating magnetic fields. Finally, we find that the FePt coatings are catalytically active and also make for Janus microswimmers that can be light-actuated and magnetically guided.Item Open Access Deposition and characterization of multi-functional, complex thin films using atomic layer deposition for copper corrosion protection(2022) Dogan, Gül; Schütz, Gisela (Prof. Dr.)This thesis focuses on ALD thin film protection properties against corrosion of copper to develop an understanding of material interface properties and to develop novel thin films processes. This understanding is then applied to enhance materials with potential use in semiconductor devices. The main research objectives are listed below: Understanding corrosion protection properties of ALD thin films: - Development of protective thin films by combining different oxide layers - To characterize the protection properties at high temperatures and in aggressive environments, - To understand the interaction of copper and ALD protection layers when exposed to high temperatures, - Finding the optimum deposition parameters to achieve defect-free thin layers for best corrosion protection Application of ALD oxide thin films for copper corrosion protection in semiconductor devices: - Structuring the ALD thin films to make reliable interface for copper-copper interconnects with micromachining methods such as laser drilling and plasma etching - To remove ALD layers in a localized, selective way without degradation of the underlying copper layerItem Open Access Chiroptical spectroscopy of a freely diffusing single nanoparticle(2020) Sachs, Johannes; Günther, Jan-Philipp; Mark, Andrew G.; Fischer, PeerChiral plasmonic nanoparticles can exhibit strong chiroptical signals compared to the corresponding molecular response. Observations are, however, generally restricted to measurements on stationary single particles with a fixed orientation, which complicates the spectral analysis. Here, we report the spectroscopic observation of a freely diffusing single chiral nanoparticle in solution. By acquiring time-resolved circular differential scattering signals we show that the spectral interpretation is significantly simplified. We experimentally demonstrate the equivalence between time-averaged chiral spectra observed for an individual nanostructure and the corresponding ensemble spectra, and thereby demonstrate the ergodic principle for chiroptical spectroscopy. We also show how it is possible for an achiral particle to yield an instantaneous chiroptical response, whereas the time-averaged signals are an unequivocal measure of chirality. Time-resolved chiroptical spectroscopy on a freely moving chiral nanoparticle advances the field of single-particle spectroscopy, and is a means to obtain the true signature of the nanoparticle’s chirality.Item Open Access Chemically active micromotors(2021) Yu, Tingting; Fischer, Peer (Prof. Dr.)Item Open Access Unusual iron nitride formation upon nitriding Fe-Si alloy(2020) Meka, S. R.; Schubert, A.; Bischoff, E.; Mittemeijer, E. J.The influence of Si, substitutionally dissolved in ferritic Fe-2 at. pct Si and Fe-4.5 at. pct Si alloys, on the nucleation and growth of γ′ iron nitride upon controlled gaseous nitriding was investigated. The nitrided specimens were characterized by XRD, light microscopy, TEM, EELS, EPMA and EBSD. The combination of difficult and thus delayed precipitation of (1) silicon nitride, because of a large misfit with the ferrite matrix, and (2) γ′ iron nitride, because of the negligible solubility of Si, was shown to lead to a series of unusual, nonequilibrium phenomena: high nitrogen supersaturation, development of Si-containing metastable γ′ phase of peculiar morphology, precipitation of amorphous silicon nitride in γ′ and development of ε nitride at thermodynamic conditions unlikely to allow its formation.Item Open Access Experimental investigation on hydrogen isotope separation in nanoporous materials(2020) Zhang, Linda; Schmitz, Guido (Prof. Dr. Dr. h.c.)Item Open Access Spatial ultrasound modulation by digitally controlling microbubble arrays(2020) Ma, Zhichao; Melde, Kai; Athanassiadis, Athanasios G.; Schau, Michael; Richter, Harald; Qiu, Tian; Fischer, PeerAcoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM.