03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    ItemOpen Access
    Microbial P450 enzymes in biotechnology
    (2004) Urlacher, Vlada B.; Lutz-Wahl, Sabine; Schmid, Rolf D.
    Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes, since they allow the introduction of oxygen even into non-activated carbon atoms in a sterically and optically selective manner which is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases (CYPs) have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e. g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways which could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are covered in this review.
  • Thumbnail Image
    ItemOpen Access
    "In gel patch electrophoresis" : a new method for environmental DNA purification
    (2005) Roh, Changhyun; Villatte, Francois; Kim, Byung-Gee; Schmid, Rolf D.
    Most of the microorganism species are largely untapped and could represent an interesting reservoir of genes useful for biotechnological applications. Unfortunately, a major difficulty associated with the methods used to isolate environmental DNA is related to the contamination of the extracted material with humic substances. These polyphenolic compounds inhibit the DNA processing reactions and severely impede cloning procedures. In this work, we describe a rapid, simple and efficient method for the purification of genomic DNA from environmental samples: we added a chromatography step directly embedded into an agarose gel electrophoresis. This strategy enabled the DNA extraction from various environmental samples and it appeared that the purity grade was compatible with digestion by restriction enzymes and PCR amplifications.
  • Thumbnail Image
    ItemOpen Access
    Development, validation, and application of an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food
    (2002) Schulze, Holger; Scherbaum, Ellen; Anastassiades, Michelangelo; Vorlová, Sandra; Schmid, Rolf D.; Bachmann, Till T.
    A highly sensitive and rapid food-screening test based on disposable screen-printed biosensors was developed, which is suitable for monitoring infant food. The exposure of infants and children to neurotoxic organophosphates and carbamates is of particular concern because of their higher susceptibility to adverse effects. The European Union has therefore set a very low limit for pesticides in infant food which must not contain concentrations exceeding 10 μg/kg for any given pesticide. The maximum residue limit (MRL) has been set to be near the determination threshold that is typically achieved for pesticides with traditional analytical methods. The biosensor method could detect levels lower than 5 μg/kg and thus clearly fulfills the demands of the EU. To substantiate these measurements, recovery rates were determined and amounted on average to 104 % in food. Matrix effects were eliminated by the introduction of a special electrode treatment. The test was compared with two traditional pesticide multiresidue analysis methods (GC/MS, LC/MS) using 26 fruit and vegetable samples from local markets and 23 samples of processed infant food from Germany, Spain, Poland and the USA. Three infant food samples exceeded the MRL of 10 μg/kg when analyzed by either biosensor test or multiresidue methods.
  • Thumbnail Image
    ItemOpen Access
    Directed evolution of a bacterial alpha-amylase : towards enhanced pH-performance and higher specific activity
    (2003) Bessler, Cornelius; Schmitt, Jutta; Maurer, Karl-Heinz; Schmid, Rolf D.
    Alpha-Amylases, in particular, microbial Alpha-amylases are used widely in industrial processes such as starch liquefaction and pulp processes and more recently in detergency. Following the need for Alpha-amylases adapted to latter, we enhanced the alkali-activity of the Alpha-amylase from Bacillus amyloliquefaciens (BAA). The genes coding for the wild type BAA and the mutants BAA S201N and BAA N297D were subjected to error prone PCR and gene shuffling. For the screening of mutants we developed a novel, reliable assay suitable for high throughput screening based on the Phadebas® assay. One mutant (BAA 42) has an optimal activity at pH 7, corresponding to a shift of one pH unit compared to the wild type. BAA 42 is active over a broader pH-range than the wild type resulting in a fivefold higher activity at pH 10. In addition, the activity in periplasmic extracts and the specific activity increased 4 and 1.5 fold, respectively. Another mutant (BAA 29) possesses a wild type like pH-profile but reveals a 40-fold higher activity in periplasmic extracts and a nine fold higher specific activity. The comparison of the amino acid sequences of these two mutants with other homologous microbial Alpha-amylases revealed the mutation of the highly conserved residues W194R, S197P and A230V. In addition, three further mutations were found K406R, N414S and E356D, the latter being present in other bacterial Alpha-amylases.
  • Thumbnail Image
    ItemOpen Access
    A comparative study of extraction and purification methods for environmental DNA from soil and sludge samples
    (2006) Roh, Changhyun; Villatte, Francois; Kim, Byung-Gee; Schmid, Rolf D.
    An important prerequisite for a successful metagenome library construction is an efficient extraction procedure for DNA out of environmental samples. In this study we compared three indirect and four direct extraction methods, including a commercial kit, in terms of DNA yield, purity and time requirement. A special focus was set on methods which are appropriate for the extraction of environmental DNA (eDNA) from very limited sample sizes (0.1 g) to enable a highly parallel approach. Direct extraction procedures yielded on average 100-fold higher DNA amounts than indirect ones. A drawback of direct extraction was the small fragment size of appr. 12 kb. The quality of the extracted DNA was evaluated by the ability of different restriction enzymes to digest the environmental DNA. Only the commercial kit and a direct extraction method using freeze-thaw cell lysis in combination with an in gel patch electrophoresis with hydroxyapatite to remove humic acid substances yielded DNA, which was completely digested by all restriction enzymes. Moreover, only DNA extracted by these two procedures could be used as template for the amplification of fragments of several 16S rDNA, 18S rDNA groups under standard PCR conditions.
  • Thumbnail Image
    ItemOpen Access
    The molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases
    (2003) Henke, Erik; Bornscheuer, Uwe Theo; Schmid, Rolf D.; Pleiss, Jürgen
    Carboxylesterases containing the sequence motif GGGX catalyze hydrolysis of esters of chiral tertiary alcohols, albeit at only low to moderate enantioselectivity towards three model substrates (linalyl acetate, methyl-1-pentin-1-yl acetate, 2-phenyl-3-butin-2-yl acetate). In order to understand the molecular mechanism of enantiorecognition and to improve enantioselectivity towards this interesting substrate class, the interaction of both enantiomers with the substrate binding sites of acetylcholinesterases and p-nitrobenzyl esterase from Bacillus subtilis was modeled and correlated to experimental enantioselectivity. For all substrate-enzyme pairs, enantiopreference and ranking by enantioselectivity could be predicted by the model. In p-nitrobenzyl esterase, one of the key residues in determining enantioselectivity was G105: exchange of this residue by alanine led to a six-fold increase of enantioselectivity (E=19) towards 2-phenyl-3-butin-2-yl acetate. However, the effect of this mutation is personalized: towards the substrate linalyl acetate, the same mutant had a reversed enantiopreference. Thus, depending on the substrate structure, the same mutant had either increased enantioselectivity or opposite enantiopreference compared to wild type enzyme.
  • Thumbnail Image
    ItemOpen Access
    Reconstitution of beta-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase
    (2006) Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.
    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards -carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude E. coli cell extract at 37°C. In this system -carotene was hydroxylated to -cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low -cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated -carotene at 3- and also 3’-positions, resulting in -cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol -cryptoxanthin produced per nmol P450 per min.
  • Thumbnail Image
    ItemOpen Access
    Recombinant production of human microsomal cytochrome P450 2D6 in the methylotrophic yeast Pichia pastoris
    (2005) Dietrich, Matthias; Grundmann, Lisa; Kurr, Katja; Valinotto, Laura; Richter, Tanja; Schmid, Rolf D.; Lange, Stefan
    Microsomal cytochrome P450 monooxygenases of the groups 1 – 3 are mainly expressed in liver and play a crucial role in phase 1 reactions of the xenobiotics metabolism. The cDNAs encoding human CYP2D6 and human NADPH-P450 oxidoreductase (CPR) were transformed into the methylotrophic yeast Pichia pastoris and expressed under control of the methanol inducible AOX1 promotor. The determined molecular weights of the recombinant CYP2D6 and CPR closely matched the calculated values of 55.8 and 76.6 kDa. CPR activity was detected by conversion of cytochrome c using isolated microsomes. Nearly all the recombinant CYP is composed of the active holo-enzyme as confirmed by reduced CO-difference spectra which showed a single peak at 450 nm. Only by co-expression of human CPR and CYP, CYP2D6 activity was obtained. Microsomes containing human CPR and CYP2D6 converted different substrates, such as 3-cyano-7-ethoxycoumarin, parathion, and dextrometorphan. The kinetic parameters of the dextrometorphan conversion closely matched those of CYP2D6 from other recombinant expression systems as well as from human microsomes. The endogenous NADPH-P450 oxidoreductase of Pichia pastoris seems to be incompatible with human CYP2D6, as expression of CYP2D6 without human CPR did not result in any CYP-activity. These recombinant strains provide a novel, easy-to-handle and cheap source for the biochemical characterization of single microsomal cytochromes as well as their allelic variants.
  • Thumbnail Image
    ItemOpen Access
    Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity
    (2002) Schmitt, Jutta; Brocca, Stefania; Schmid, Rolf D.; Pleiss, Jürgen
    The molecular basis of chain length specificity of Candida rugosa lipase 1 was investigated by molecular modelling and site-directed mutagenesis. The synthetic lip1 gene and the lipase mutants were expressed in Pichia pastoris and assayed for their chain length specificity in single substrate assays using triglycerides as well as in a competitive substrate assay using a randomized oil. Mutation of amino acids at different locations inside the tunnel (P246F, L413F, L410W, L410F/S300E, L410F/S365L) resulted in mutants with a different chain length specificity. Mutants P246F and L413F have a strong preference for short chain lengths whereas substrates longer than C10 are hardly hydrolyzed. Increasing the bulkiness of the amino acid at position 410 led to mutants that show a strong discrimination of chain lengths longer than C14. The results obtained can be explained by a simple mechanical model: the activity for a fatty acid sharply decreases as it becomes long enough to reach the mutated site. In contrast, a mutation at the entrance of the tunnel (L304F) has a strong impact on C4 and C6 substrates. This mutant is nevertheless capable to hydrolyze chain lengths longer than C8.