03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Modular approach to creating functionalized surface arrays of molecular qubits
    (2023) Tesi, Lorenzo; Stemmler, Friedrich; Winkler, Mario; Liu, Sherri S. Y.; Das, Saunak; Sun, Xiuming; Zharnikov, Michael; Ludwigs, Sabine; Slageren, Joris van
    The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many‐particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom‐up method is reported to arrange molecular qubits as functional groups of self‐assembled monolayers (SAMs) on surfaces, combining molecular self‐organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.
  • Thumbnail Image
    ItemOpen Access
    Molecular one‐ and two‐qubit systems with very long coherence times
    (2023) Schäfter, Dennis; Wischnat, Jonathan; Tesi, Lorenzo; De Sousa, J. Alejandro; Little, Edmund; McGuire, Jake; Mas‐Torrent, Marta; Rovira, Concepció; Veciana, Jaume; Tuna, Floriana; Crivillers, Núria; Slageren, Joris van
    General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.