03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
98 results
Search Results
Item Open Access Synthese und Charakterisierung von amphipolaren Blockcopolymeren und Untersuchung des Phasenverhaltens in Mischungen mit Polypropylen(2012) Curcic, Tamar; Eisenbach, Claus Dieter (Prof. Dr. )Um Polypropylen (PP) / Polyamid (PA)-Mehrschichtfolien mit verbesserten mechanischen, optischen und permeationstechnischen Eigenschaften ohne Verwendung von speziellen Haftvermittlerschichten herzustellen, wurden Diblockcopolymere eingesetzt. Diese können dem PP und/oder PA in einem Zweischneckenextruder als Additiv zugemisch werden. Bei diesem Konzept wird versucht, die Grenzflächenspannung an der PP/PAGrenzfläche herabzusetzen und dadurch nach der Zusammenführung der einzelnen Schichten eine Verbundhaftung zu erzielen. Da die Blendmorphologie die Eigenschaften der Materialien entscheidend beeinflusst, sollten zuerst das Phasenverhalten der PP / HV Blends sowie die Anreicherung der Blockcopolymere an der PP-Oberfläche untersucht werden. Ziel dieser Arbeit war es, das thermische Verhalten, das Phasenverhalten sowie die Oberflächeneigenschaften von Blends, bestehend aus PP und Blockcopolymeren Poly((ethylen-alt-propylen)-b-oxyethylen) (PEP-PEO), mit unterschiedlichen Blocklängenverhältniss zu untersuchen. Zu diesem Zweck wurden amphiphile Blockcopolymere PEP-PEO als Modelladditive mit definiertem Molekulargewicht und Blocklängenverhältnis des Poly(oxyethylen)- und C2-verzweigten Polyethylenblocks hergestellt und charakterisiert. Die Synthese des Blockcopolymers Poly((ethylen-alt-propylen)-b-oxyethylen) erfolgte durch anionische Polymerisation von Isopren und Ethylenoxid. Die Synthese stellte eine dreistufige Reaktion dar. Im ersten Schritt wurde Isopren polymerisiert. Danach wurde der Isoprenblock hydriert und im letzten Schritt wurde der Ethylenoxidblock aufgebaut. So hat man die Möglichkeit, die sequenzielle Analytik betreiben zu können und dazu noch die Verträglichkeit von PEP-Blöcken unterschiedlichen Molmassen mit Polypropylen zu prüfen. Die Versuche zur Bestimmung der Verträglichkeit von PP und PEP haben gezeigt, dass PEP mit Mn= 5000 nur bedingt in Polypropylen löslich ist. Hingegen zeigt PEP mit Mn=15000 uneingeschränkte Löslichkeit mit Polypropylen. PP/PEP(Mn=5000)-Blends waren ab 8 Gew. % an Blockcopolymerantel brüchig und trüb. Blends bestehend aus PP und PEP(Mn=15000 g/Mol) waren hingegen bis einschliesslich 20 Gew % an BP-Anteil durchsichtig und elastisch. Da Bulk- und Oberflächeneigenschaften im engen Zusammenhang stehen, wurden die PP/BP-Blends hinsichtlich dieser Eigenschaften charakterisiert. Für Bulkeigenschaften wurde das Mischungsverhalten der Blends mittels Wärmeflusskalorimetrie (DSC) untersucht. Für die Charakterisierung der Oberflächeneigenschaften kamen oberflächensensitive Methoden wie IRSpektroskopie mit ATR-Technik und Benetzungsanalyse zum Einsatz. Außerdem wurden wärmeflußkalorimetrische (DSC) und schmelzrheologische Studien für die Bestimmung des Phasenverhaltens der Systeme unter dynamischen Bedingungen eingesetzt. Am Beispiel des Blendsystems PP/PEP-PEO ist die Gültigkeit des Zeit-Temperatur-Superpositionsprinzips exemplarisch für die untersuchten Blends in dieser Arbeit untersucht worden. Die Analyse zeigt, dass das Modellblendsystem PP/BP-2b das Zeit-Temperatur-Superpositionsprinzip mit zunehmendem Diblockcopolymergehalt immer weniger erfüllt. Die Interpretation der Messergebnisse lässt sich auf Grundlage der Perkolationstheorie erklären. Beim Auftragen des Speichermoduls gegenüber dem Gewichtsanteil an Blockcopolymer resultierte eine Kurve, die sich mit Hilfe der error Funktion komplett wiedergeben ließ. Dieses Ergebnis lässt den Schluss zu, dass bei den untersuchten Polymerblends die beobachtete Änderung des Speichermoduls als Perkolationseffekt zu deuten ist und der Verlauf der Kurve den Perkolationsgesetzmäßigkeiten folgt. Der beobachtete Effekt korreliert sehr gut mit den in Kap. 7 erläuterten Abhängigkeiten des Phasenverhaltens von Blockcopolymergehalt im Blend.Item Open Access Biochemical characterisation of tRNA-Asp methyltransferase Dnmt2 and its physiological significance(2014) Shanmugam, Raghuvaran; Jeltsch, Albert (Prof. Dr.)Methylation of tRNA plays important roles in the stabilisation of tRNAs and accurate protein synthesis in cells. In eukaryotes various tRNA methyltransferases exist, among them DNMT2 which methylates tRNAAsp at position C38 in the anticodon loop. It is also called tRNA-aspartate methyltransferase 1 (Trdmt1) and the enzyme is highly conserved among eukaryotes. In this work, I investigated the mechanism of DNMT2 interaction with tRNAAsp, characterised the function of the only prokaryotic Dnmt2 homolog found in G. sulfurreducens and studied the physiological importance of the C38 methylation of tRNAAsp in mammalian cells. The molecular details of the interaction of DNMT2 and tRNAAsp are unknown due to lack of the co-crystal structure. Here, I characterised the important residues in DNMT2 required for the tRNA binding and catalysis. By site-directed mutagenesis of 20 conserved lysine and arginine residues in DNMT2, I show that 8 of them have a strong effect on the catalytic activity of the enzyme. They map to one side of the enzyme where the catalytic pocket of DNMT2 is located. The binding of most of the mutant enzymes to tRNA was unaffected suggesting a role of these residues in transition state stabilisation. Manual docking of tRNAAsp into the surface cleft decorated by the 8 residues suggested that DNMT2 interacts mainly with the anticodon stem/loop of tRNAAsp. In my second project, I characterised the function of Dnmt2 homolog found in G. sulfurreducens (GsDnmt2). Here, I show that GsDnmt2 methylates tRNAGlu more efficiently than tRNAAsp. I also report the molecular basis for the swapped substrate specificity of GsDnmt2 and show that the variable loops of G.sulfurreducens tRNAAsp and tRNAGlu of eukaryotes contain a -GG- dinucleotide which is not preferred by Dnmt2. Exchange of the variable loop of mouse tRNAAsp to that tRNAGlu led to dramatic decrease in the activity of human DNMT2. This identifies the variable loop of tRNA as a specificity determinant in the recognition by Dnmt2. In my final project, I investigated the physiological importance of the tRNAAsp C38 methylation in aminoacylation and cellular protein synthesis. Here, I report that C38 methylation enhances the rate of aspartylation on tRNAAsp by 4-5 folds. Concomitant with this, a decrease in the charging levels of tRNAAsp was observed in Dnmt2 knockout MEF cells, which also showed a reduced efficiency in the synthesis of proteins containing poly-Asp sequences. A gene ontology searches for proteins with poly-Asp sequences showed that a significant number of these proteins are associated with transcriptional regulation and gene expression functions. With this I propose that the mild phenotype observed with the Dnmt2 KO cells under stress condition could be correlated to a disregulation of protein synthesis.Item Open Access Enzymatic asymmetric dihydroxylation of alkenes(2016) Gally, Christine; Hauer, Bernhard (Prof. Dr.)The introduction of chirality into C=C double bonds is of special interest in organic synthesis. In particular, the catalytic asymmetric dihydroxylation (AD) of alkenes has attracted considerable attention due to the facile transformation of the chiral diol products into valuable derivatives. By chemical means, the metal-catalyzed AD of olefins provides both stereo- and regiospecific cis-diol moieties. Next to their toxicity, however, these metal catalysts can also lead to byproduct formation as a result of oxidative fission. In nature, Rieske non-heme iron oxygenases (ROs) represent promising biocatalysts for this reaction since they are the only enzymes known to catalyze the stereoselective formation of vicinal cis-diols in one step. ROs are key enzymes in the degradation of aromatic hydrocarbons and can target a wide variety of different arenes. Despite their broad substrate scope, limited data is available for the conversion of unnatural substrates by this class of enzymes. To explore their potential for alkene oxidation, three ROs were tested for the oxyfunctionalization of a set of structurally diverse olefins including linear and cyclic arene-substituted alkenes, cycloalkenes as well as several terpenes. Naphthalene- (NDO), benzene- (BDO) and cumene dioxygenases (CDO) from different Pseudomonas strains where selected as they are amongst the RO enzymes that have already been reported to catalyze the oxidation of a small number of olefins. The majority of compounds from the selected substrate panel could be converted by NDO, BDO or CDO and products were either isolated and identified by NMR analysis or using the authentic standards. Dependent on the substrate, allylic monohydroxylation was found in addition to the corresponding diol products, a reaction which is chemically still most reliably achieved by the use of SeO2 in stoichiometric amounts. However, having been evolved for the dihydroxylation of aromatic compounds, wild type ROs displayed low conversions (< 50%) and modest stereoselectivities (≤ 80% ee/de) for several of the tested olefins. To overcome these limitations, changes in the active site topology of RO catalysts were introduced. A single targeted point mutation that was identified based on sequence and structural comparisons with other members of the RO family proved to be sufficient to generate BDO and CDO variants displaying remarkable changes in regio- and stereoselectivity for various substrates. In particular biotransformations with CDO M232A gave excellent stereoselectivities (≥ 95% ee/de) and good activities (> 90%) also for linear alkenes, which have been reported to be challenging substrates for RO-catalyzed oxyfunctionalizations. Site-saturation mutagenesis at position 232 in CDO revealed a correlation between the steric demand of the amino acid side chain and its influence on regio- and/ or stereoselectivities for styrene and indene. While the wild type enzyme almost exclusively catalyzed the dihydroxylation of the aromatic ring, the regioselectivity was shifted with decreasing side chain size to the terminal vinyl group of styrene, yielding up to 96% of the alkene-1,2-diol. For cis-1,2-indandiol formation, enantiocomplementary enzymes could be generated, a fact further highlighting the importance of position 232 for the engineering of ROs. Moreover, site-saturation mutagenesis of additional residues in the substrate binding pocket of CDO (F278, I288, I336 and F378) identified further positions having an influence on selectivity and product formation for alkene oxidation. To proof the applicability of ROs for organic synthesis, semi-preparative scale biotransformations (70 mg) of selected substrates were performed with CDO M232A. Without further optimization of the reaction set-up, products were successfully isolated in > 30% yield. In addition, up-scaling of (R)-limonene hydroxylation to 4 L in a bioreactor with growing cells gave final isolated product titers of 0.4 g L-1 even though substrate volatility and product toxicity diminished the yield. In conclusion, these examples demonstrated that a single point mutation was sufficient to transform CDO wild type into an efficient catalyst, furthermore constituting the first example of the rational engineering of CDO and BDO enzymes for the oxyfunctionalization of a broad range of alkenes.Item Open Access Genetisch modifizierte Biotemplate zur Erzeugung von Zr-basierten Nanomaterialien(2019) Eisele, Rahel; Bill, Joachim (Prof. Dr.)In Biomineralisationsprozessen aus der belebten Natur scheiden sich anorganische Materialien auf organischen Templaten (Biomakromoleküle) ab. Funktionelle Gruppen der Makromoleküle steuern dabei die Abscheidung aus einer wässrigen Lösung sowie die Strukturierung des anorganischen Materials. Dabei sind spezifische Wechselwirkungen zwischen dem organischen Templat und dem anorganischen Material von Bedeutung. Die Materialbildung findet unter Umgebungsbedingungen in wässrigen Systemen statt. Für technisch interessante Materialien wie Zirkoniumdioxid (ZrO2) stellt die energieeffiziente Herstellung präziser Nanostrukturen eine technische Herausforderung dar. Daher wurden im Rahmen dieser Arbeit die Prinzipien der Biomineralisation auf die Herstellung von Zirkonium-basiertem Material (ZrbM) übertragen. Hierzu gehörte die Materialbildung durch Mineralisation aus einer ZrOCl2-Lösung sowie eine gezielte Mineralisation auf bioorganischen M13-Bakteriophagentemplaten. Um die „biologische Spezifität“ in Biomineralisationsprozessen auf die Bildung von ZrbM zu übertragen, wurden Peptide mittels Phagen-Display identifiziert, die spezifisch an ZrO2 binden. Mittels genetischer Modifikation wurden diese ZrO2 Bindepeptide auf der Phagenoberfläche präsentiert. Hierdurch wurde eine hohe Bindepeptiddichte und damit viele Interaktionspunkte zum anorganischen Material erzielt. Bevor der Einfluss dieser Bindepeptide auf die Mineralisation von ZrbM untersucht werden konnte, wurde zunächst der Partikelbildungs- und Partikelwachstumsprozess von ZrbM in einer ZrOCl2-Lösung und einem Ethanol-Wasser Lösungsmittelgemisch bei verschiedenen System- und Prozessparametern beschrieben. Auf Grundlage dieser Ergebnisse wurde eine Mineralisationslösung etabliert mit der der Einfluss der Bindepeptide - präsentiert auf der Phagenoberfläche - auf die Mineralisation von ZrbM untersucht werden konnte. Die Bindepeptide zeigten einen deutlichen Einfluss auf die Mineralisation von ZrbM. Im Vergleich zu Bakteriophagen ohne Bindepeptid wurde mit den genetisch modifizierten Bakteriophagen eine deutlich höhere Abscheiderate erzielt. Dieser Einfluss der Bindepeptide wurde auf Hydroxygruppen in Serineinheiten zurückgeführt. Diese führen zum einen zu einer starken Anziehung von molekularen Zr-Spezies an das Biotemplat. Zum anderen induzieren die Hydroxygruppen die heterogene Keimbildung von ZrbM durch Kondensationsreaktionen zwischen dem Biotemplat und molekularen Zr-Spezies. Somit ist es nun möglich genetisch kontrolliert Zr-basierte Nanomaterialien zu mineralisieren. Im Rahmen dieser Arbeit gelang es nicht nur einzelne Phagen zu mineralisieren, sondern auch dünne homogene Schichten aus ZrbM. Diese ZrbM-Schichten wurden im letzten Teil dieser Arbeit vergleichend zu Phagenschichten und SiO2-Schichten auf die Adhäsion von Staphylococcus aureus (S. aureus) getestet. S. aureus ist ein pathogenes Bakterium, welches zur Bildung von Biofilmen, zum Beispiel auf Implantaten, und dadurch zu einem Implantatverlust bis hin zu lebensbedrohlichen Komplikationen führen kann. Die Biofilmbildung kann effektiv unterbunden werden, indem die Bakterienadhäsion auf Oberflächen verhindert wird. Daher wurde im Rahmen dieser Arbeit untersucht, ob bestimmte chemische Oberflächen, das heißt bestimmte Materialien oder auch bestimmte funktionelle Gruppen, die Bakterienadhäsion unterdrücken können. Die Untersuchung der Bakterienadhäsion auf den verschiedenen Oberflächen ergab, dass auf der Phagenschicht im Vergleich zur SiO2-Schicht und einer Schicht aus ZrbM eine sehr geringe Bakterienadhäsion vorlag. Untersuchungen verschiedener Einflussfaktoren auf die Bakterienadhäsion zeigten, dass die Bakterienadhäsion an der SiO2-Schicht und der ZrbM-Schicht durch die Oberflächenrauigkeit, die Hydrophobizität und die Oberflächenladung beeinflusst werden kann. Bei der Phagenschicht korrelierten weder die Oberflächenladung, noch die Oberflächenrauigkeit und die Hydrophobizität im Vergleich zu den anorganischen Materialoberflächen mit der Bakterienadhäsion. Dies ließ darauf schließen, dass die geringe Bakterienadhäsion auf der Phagenschicht auf die biochemische Zusammensetzung der Hüllproteine, vor allem auf die Abwesenheit spezifischer Bindedomänen (Ligand-Rezeptor-Wechselwirkungen), zurückzuführen ist.Item Open Access Charakterisierung umweltneutraler, natürlicher eisenhaltiger Sauerstoffträger für Chemical-Looping-Combustion (CLC)-Kraftwerke(2018) Schopf, Alexander; Massonne, Hans-Joachim (Prof. Dr.)Chemical Looping Combustion (CLC) ist eine großtechnische Verbrennungstechnologie zur Stromerzeugung mittels Wirbelschichtreaktoren unter Verwendung von Feststoffen anstelle von Luft als Sauerstoffträger. CLC zählt zu den CO2-Sequestrierungsverfahren für Carbon Dioxide Capture and Storage (CCS). Das Rauchgas besteht hauptsächlich aus Wasserdampf und Kohlenstoffdioxid, die Produktion von Stickoxiden wird prozessbedingt vermieden, der Wirkungsgradverlust liegt bei theoretisch 2 bis 3 %. Das bislang als Sauerstoffträger für CLC verwendete Mineral Ilmenit ist im Vergleich mit anderen Erzen relativ selten. Synthetisch hergestellte Sauerstoffträger sind dagegen teurer und daher unwirtschaftlich. Ziel der Arbeit war die Identifikation umweltneutraler natürlicher Sauerstoffträger für CLC-Kraftwerke die sowohl gut verfügbar sind als auch wirtschaftliche Alternativen darstellen. Für die Untersuchungen wurden die Gütekriterien der Effektivität für CLC und Kraftwerkseignung zu Grunde gelegt: gute Abriebfestigkeit, hohe Reaktivität mit Brenngasen bei 900 °C, insbesondere Methan, hohe Sauerstofftransportkapazität mit ca. 10 % Masseverlust bei der Reduktion, hohe Reaktivität mit Luftsauerstoff bei der Oxidation und eine Temperaturstabilität von mindestens 1000 °C unter oxidierenden Bedingungen. Weiteres Forschungsziel war die Aufklärung der ablaufenden Prozesse der Reduktions- bzw. Oxidations-Reaktionen bei den einzelnen Sauerstoffträgern unter simulierten Kraftwerksbedingungen. Mit der Entwicklung eines systematischen, für alle Sauerstoffträger anwendbaren, Untersuchungsgangs wurde eine fundamentale Methode zur Visualisierung der inhärenten chemischen Reaktionen bei wiederholender sukzessiver Reduktion und Oxidation geschaffen. Die experimentelle Versuchsabfolge gliederte sich in vier Teile: Vorbereitung und mineralogische Untersuchung zur Beschreibung des Ausgangsmaterials, Vorstudie zur Überprüfung der Temperaturstabilität von 1000 °C in der Thermowaage (TGA), Hauptstudie mit Simulation von CLC in der TGA und eine Vergleichsstudie unter Kraftwerksbedingungen im Versuchskraftwerk des Instituts für Feuerungs- und Kraftwerkstechnik der Universität Stuttgart zur Korrelation der Ergebnisse der Hauptstudie. Unter ihrer Anwendung wurden die hier einbezogenen Proben charakterisiert, wobei sich sieben von 12 Proben der Hauptstudie (aufgrund der formulierten Anforderungskriterien) als Sauerstoffträger besonders geeignet erwiesen: Magnetiterz, Maphopha (RSA), Magnetiterz, Thạch Khê (SGA), Roter Glaskopf, Toulkine (IMI), MIOX ME400, Waldenstein (KMI), Hämatiterz, Norwegen (DH), Bändereisenerz, Bogalatladi (RSA) und Ilmeniterz, Capel (IFK). Bei sehr lang gewählten Reduktionszeiten mit Brenngas entstanden zudem Varietäten des Kohlenstoffs, wie bspw. amorpher Kohlenstoff, Graphit und Graphen, als Abscheidung aus der Gasphase auf den Sauerstoffträgeroberflächen. Dies gibt Anlass zu weiteren Forschungen.Item Open Access Interaction of carbon and nitrogen in iron(Stuttgart : Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung), 2016) Göhring, Holger; Mittemeijer, Eric Jan (Prof. Dr. Ir.)Item Open Access Deposition of metal oxide thin films from solutions containing organic additives(2007) Lipowsky, Peter; Aldinger, Fritz (Prof. Dr.)In bio-inspired materials synthesis the principles of biomineralization are employed for the fabrication of materials with favourable functional properties at near-ambient temperature and with little expenditure: Organic templates direct the formation of inorganic matter. In aqueous solution, zinc compounds with manifold morphologies are produced by thermal hydrolysis of zinc nitrate in the presence of biomolecules like amino acids and dipeptides. In methanol, ZnO films are deposited by hydrolysis of zinc acetate in the presence of polymers like polyvinylpyrrolidone (PVP) and polyethylene glycol. With PVP, particularly smooth, uniform and stable films are fabricated. Their thickness is determined by the deposition time and the polymer concentration. Various microscopic and spectroscopic measurements prove that the films consist of textured nanocrystalline zinc oxide. Selected properties of the films, such as their photoluminescence, are investigated. Film deposition is possible on substrates with organic coatings bearing certain functional groups. Patterned films can be deposited after local decomposition of the organic coating by UV light. The mechanism of film formation is treated in detail. Like in biomineralization, an amorphous transient state of matter occurs before crystallization. This state succumbs to ZnO nanocrystals, which either aggregate in solution or adsorb to the substrate. It is demonstrated in what way the additive controls the reaction. Sulfonate-modified polystyrene beads are coated with zinc oxide and used as sacrificial templates for the fabrication of zinc oxide hollow spheres. Laminates of alternating layers of zinc oxide and poly(amino acids) are deposited and exhibit an improved mechanical performance compared to the monolithic zinc oxide.Item Open Access Spectroscopic investigations of the magnetic anisotropy of lanthanide- and cobalt-based molecular nanomagnets(2016) Rechkemmer, Yvonne; Slageren, Joris van (Prof. Dr.)Single-molecule magnets are metal complexes exhibiting an energy barrier for spin reversal, leading to magnetic bistability and slow relaxation of the magnetization. Their potential for practical applications such as high-density magnetic data storage was recognized early on and with the goal of achieving high energy barriers, different kinds of single-molecule magnets have been synthesized. The quadratic dependence of the barrier height on the spin motivated chemists to synthesize metal complexes with very high total spins; however, with limited success. It was shown that high spins come along with low anisotropies and increased interest thus focused on the synthesis and investigation of (mononuclear) complexes of highly anisotropic metal centers, e.g. lanthanide or cobalt complexes. Although rather high energy barriers can be achieved in such systems, practical application remains problematic and has not been realized yet. Reasons are for example the lack of rational design criteria and the complex interplay of different magnetic relaxation pathways. The aim of this work was therefore the comprehensive magnetic and spectroscopic investigation of selected molecular lanthanide and cobalt compounds in order to obtain a deeper insight into the correlation of molecular and electronic structures as well as the corresponding magnetic properties. The applied spectroscopic methods included electron paramagnetic resonance spectroscopy, far-infrared spectroscopy and optical methods. Special emphasis was placed on magnetic circular dichroism (MCD) spectroscopy, which served as a main tool for electronic structure determination. However, since the MCD-spectrometer was not part of the available experimental equipment at the University of Stuttgart, its design, setup and characterization were the first part of this work. In the further course of this work MCD-spectroscopy was employed for the electronic structure determination of selected lanthanide and cobalt compounds. The studied lanthanide compounds were literature-known molecular tetra-carbonates of erbium (1-Er) and dysprosium (1-Dy). Detailed magnetometric studies showed that both 1-Er and 1-Dy are field-induced single-molecule magnets; however, 1-Er and 1-Dy show significant differences in their magnetic relaxation behavior. The magnetic studies were complemented by detailed spectroscopic investigations.The combination of far-infrared-, luminescence- and MCD-spectroscopy allowed for the experimental determination of 48 energy levels for 1-Er and 55 levels for 1-Dy, which built the foundation for the subsequent crystal field analysis and electronic structure determination. In addition, the results of EPR-spectroscopic studies were used for fine-tuning and verifying the respectively determined crystal field parameters. Calculating the magnetic dipole strengths for transitions between the relevant states led to a quantitative understanding of the magnetic relaxation pathways. Besides the investigation of lanthanide compounds, this thesis deals with two classes of cobalt complexes. The first class comprises mononuclear complexes in which one Co(II) ion is ligated by the nitrogen donors of two doubly deprotonated 1,2-bis(methanesulfonamido)-benzene-ligands. Rather acute N-Co-N bite angles indicate strong deviations from ideal tetrahedral symmetry. The static magnetic properties hint at very high energy barriers for spin reversal and with the help of far-infrared spectroscopy, largely negative axial zero-field splitting parameters were determined. The corresponding energy barriers belong to the highest ever reported for 3d-transition metal complexes and investigating the dynamic magnetic properties confirmed single-molecule magnet behavior. The unique magnetic properties were fully explained by analyzing spectroscopic results. The MCD-spectra showed intense signals that were assigned to spin-allowed d-d-transitions. Subsequent crystal field analysis revealed that the strong axial crystal field generated by the ligands leads to a large splitting of the electronic terms and thus in turn to a relatively small energy gap between the electronic ground state and the first excited state. The resulting increase in second-order spin-orbit coupling explains the high energy barriers observed in the studied complexes. The second class of cobalt compounds studied in this work included dimers of distorted octahedrally coordinated Co(II) ions bridged by symmetrical or asymmetrical quinone based bridging ligands. The main focus of investigation lay on the impact of the bridging ligand on the magnetic coupling between the cobalt centers. Thus, the magnetic properties of the complexes were studied with the help of static susceptibility and magnetization measurements and analyzed by means of different models. Depending on the bridging ligand, different signs for the exchange coupling constants were found. The varying signs can be explained by different relative contributions of possible exchange paths, influenced by the different substituents at the bridging ligands or slight geometry differences. The observations indicate that electron withdrawing substituents favor ferromagnetic couplings, which are preferred in the context of molecular magnetism. All in all, it can be concluded that this work provides a contribution to the deeper understanding of the features relevant for single-molecule magnets. The electronic structure determination for selected lanthanide and cobalt complexes applying advanced magnetometric and spectroscopic techniques not only led to an understanding of the static and dynamic magnetic properties but also allowed for the development of design criteria and new approaches for improved single-molecule magnets in the future.Item Open Access Aluminum-induced crystallization of semiconductor thin films(2015) Qu, Fei; Schmitz, Guido (Prof. Dr.)Thin film materials of the semiconductors, such as silicon (Si), germanium (Ge) or their alloys, are turning into the most promising functional materials in the energy technology. However, the morphologies of these semiconductor thin films must be varied to be suitable for the different applications, e.g. a large-grained layer as the seed layer of thin film solar cells, a porous structure for anode materials of high energy rechargeable lithium (Li) ion batteries. Due to the collective interdiffusion process during the aluminum (Al)-induced crystallization, in this thesis, the suitable morphologies are achieved for the corresponding applications under the different fabrication conditions. A large-grained Si layer can be formed by the crystallization of Si in a porous Al layer, which is obtained by applying a bias voltage. Since the Al grain boundaries are contaminated by e.g. oxygen (O), the diffusion of Si in the Al grain boundaries is retarded. It can lead to a reduction of the nucleation density of Si. At a certain high temperature, a collective diffusion process of Si in Al is activated. Consequently, a large-grained Si layer with (100) texture can be formed. By purposely interrupting the annealing of nanocrystalline Al/amorphous Si (a-Si) bilayers, a porous structure of the crystallized Si can be developed due to the incomplete intermixing of Si and Al. Due to the different dominant diffusion processes of Si in Al at the different annealing temperatures, the most Si diffuses along the different paths in the Al layer, such as triple junction, grain boundary and Al bulk. Therefore, it can develop the different morphologies of the porous Si layers after the selectively etching of Al. By introducing an amorphous Ge interlayer between the crystalline Al and amorphous Si layer, the Al grain boundaries are not essential for the crystallization of the amorphous Si in contrast to the case in Al/Si bilayer system. Si crystallizes continuously on the pre-crystallized Ge seeds which form initially at the original interface of crystalline Al and amorphous Ge. The thermodynamic models to interpret the fundamentals of these different crystallization behaviors of Si are established based on the change of the interface energy between the different phases of the whole system during the crystallization. Using the effective diffusivity, the dominant diffusion process of Si in Al can be investigated to explore the morphological dependence of the crystallized Si layer on the annealing conditions.Item Open Access Untersuchungen zur Derivatisierung und Charakterisierung Carben-analoger N-heterozyklischer Halogenarsane(2021) Bender, Johannes; Gudat, Dietrich (Prof. Dr. Dr.)Die Chemie neutraler N-heterozyklischer Arsane konnte durch Synthese einer Reihe von Verbindungen mit funktionellen Substituenten am Arsen (Halogeno-, Pseudohalogeno-substituiert) erweitert sowie strukturelle und elektronische Verhältnisse aufgeklärt werden. Aus 2-Chloro-1,3,2-Diazaarsolidinen und -1,3,2-Diazaarsolenen konnten einige neue kationische Arsen-Analoga von N-heterozyklischen Carbenen hergestellt werden. Des Weiteren konnten noch unbekannte 2-Thiolato- und 2-Xanthogenato-1,3,2-Diazaarsolidine und -1,3,2-Diazaarsolene dargestellt und charakterisiert werden.