03 Fakultät Chemie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4
Browse
83 results
Search Results
Item Open Access Regulation of the catalytic activity and specificity of DNA nucleotide methyltransferase 1(2014) Bashtrykov, Pavel; Jeltsch, Albert (Prof. Dr.)DNA nucleotide methyltransferase 1 (Dnmt1) is mainly responsible for the maintenance of DNA methylation in mammals and plays a crucial role in the epigenetic control of gene expression. Dnmt1 recognizes and methylates hemimethylated CpG sites formed during DNA replication. In the present work, the mechanistic details of the substrate recognition by the catalytic domain of Dnmt1, the possible role of the CXXC and RFTS domains of Dnmt1 in the regulation of specificity and activity of Dnmt1, and the influence of the Ubiquitin-like PHD and RING finger domain-containing 1 (Uhrf1) protein on the enzymatic properties of Dnmt1 was investigated. Using modified substrates, the functional roles of individual contacts of the Dnmt1 catalytic domain with the CpG site of the DNA substrate were analysed. The data show that the interaction with the 5-methylcytosine:guanine pair is required for the catalytic activity of Dnmt1, whereas the contacts to the non-target strand guanine are not important, since its replacement with adenine increased the activity of Dnmt1. It was proposed that the CXXC domain binding to unmethylated CpG sites increases the specificity of Dnmt1 for hemimethylated DNA. Our data showed that the CXXC domain does not influence the enzyme’s specificity in the full-length Dnmt1. In contrast, mutagenesis in the catalytic domain introducing an M1235S exchange resulted in a significant reduction in specificity. Therefore, the readout for the hemimethylated DNA occurs within its catalytic domain. It was observed in a crystal structure that the RFTS domain of Dnmt1 inhibits the activity of the enzyme by binding to the catalytic domain and blocking the entry of the DNA. By amino acid substitution in the RFTS domain its positioning within the catalytic domain was destabilized and a corresponding increase in the catalytic rate was observed, which supports this concept and suggests a possible mechanism to allosterically regulate the activity of Dnmt1 in cells. Uhrf1 has been shown to target Dnmt1 to replicated DNA, which is essential for DNA methylation. Here it is demonstrated that Uhrf1 as well as its isolated SRA domain increase the activity and specificity of Dnmt1 in an allosteric mechanism. The stimulatory effect was independent of the SRA domain’s ability to bind hemimethylated DNA. The RFTS domain of Dnmt1 is required for the stimulation, since its deletion or blocking of its interaction with the SRA domain, significantly reduced the ability of Uhrf1 to increase the activity and specificity of Dnmt1. Uhrf1, therefore, plays multiple roles that support DNA methylation including targeting of Dnmt1, its stimulation and an increase of its specificity.Item Open Access Untersuchungen zur enzymatischen Enantiomerentrennung von Glykolethern und Etablierung neuer Methoden des synthetischen Shufflings(2004) Rusnak, Monika; Schmid, Rolf D. (Prof. Dr.)Das Ziel dieser Arbeit bestand darin, einen geeigneten Biokatalysator für die Enantiomerentrennung des Modellsubstrats 1-Methoxy-2-Propanol (MP) bzw. seines Esters 1-Methoxy-2-Propanolacetat (MPA) bereitzustellen. In den letzten Jahren stieg das Interesse an den enantiomerenreinen Formen dieser Glykolether enorm. In dieser Arbeit richtete sich das Hauptaugenmerk auf die Evaluierung verschiedener Strategien zur Identifizierung bzw. Optimierung des Biokatalysators. Hierbei sollten sowohl Methoden der de novo Klonierung und der biochemischen Charakterisierung neuer Enzyme, wie auch der gerichteten Evolution und des rationalen Proteindesigns bereits bekannter Biokatalysatoren angewandt werden. Das so erhaltene Enzym sollte das Potenzial zum Einsatz in der chemischen Industrie haben, was hohe Anforderungen sowohl an Enantioselektivität wie auch an die Prozessstabilität eines Biokatalysators stellt. Im ersten Teil dieser Arbeit konnte die Lipase A aus Archaeoglobus fulgidus kloniert und charakterisiert werden. Dieses Enzym, welches sehr geringe Homologie zu anderen bekannten Hydrolasen aufwies, zeigte ein interessantes Profil, speziell in Bezug auf sein pH-Optimum, jedoch keine Hydrolyse von MPA. Es war bekannt, dass die Lipase B aus Candida antarctica (CalB) eine hohe Enantioselektivität vor allem bei der Hydrolyse von MPA zeigte. Ein weiterer Aspekt dieser Arbeit war daher die Abschätzung der Nutzbarkeit und Verfügbarkeit von CalB für die Enantiomerentrennung von MP / MPA. Die industrielle Anwendung von CalB ist durch die Patentierung dieses Enzyms durch Novozymes beschränkt. Die im zweiten Teil dieser Arbeit etablierte Expression von CalB in Pichia pastoris und die Übertragung des Expressionssystems auf den Fermentationsmaßstab schufen optimale Voraussetzungen für nachfolgende Experimente. Die bei dieser Expression erzielten Ausbeuten übertrafen die anderer Gruppen. Die erzeugten rationalen Mutanten zur Verbesserung der Selektivität in der Umesterung konnten keine Erhöhung der Enantioselektivität bewirken. Die hier erstmals gelungene funktionelle Expression von CalB in E.coli eröffnete jedoch die Möglichkeit zur gerichteten Evolution von CalB und dem Screening auch großer Mutantenbibliotheken, sowohl durch die Methode des Plattenscreenings wie auch durch FACS-Screening. Im dritten Teil dieser Arbeit wurde eine neue, günstige und schnelle Methode der Gensynthese entwickelt, die zur Darstellung der im vierten Teil der Arbeit verwirklichten Genbank verwendet wurde. Die so gewonnene Lipase 1 aus Moraxella sp. TA144 wurde funktionell in E.coli exprimiert und charakterisiert. Basierend auf der in dieser Arbeit etablierten Methode der Gensynthese konnte eine Genbank der CalB erstellt werden, die durch eine neue Methode des synthetisches Shuffling dargestellt wurde. Durch mehrere Evaluierungsansätze konnte die Sequenz der Genbank den Anforderungen gemäß optimiert werden, so dass das Auftreten ungewollter Mutationen minimiert werden konnte. In dem folgenden Hochdurchsatzscreening von 19000 Klonen der Genbank im vorher etablierten E.coli Expressionssystem konnte kein Klon mit Lipaseaktivität isoliert werden. Nichtsdestotrotz handelte es sich hierbei um einen interessanten neuen Ansatz der gerichteten Evolution, der nach Optimierung der Lipaseexpression bzw. des Screeningsystems und möglicherweise nach Herabsetzung des Degenerationsgrades zu neuen Biokatalysatoren mit interessanten Eigenschaften führen sollte. Insgesamt zeigte diese Arbeit, dass es zur enzymatischen Enantiomerentrennung von MPA im Moment keinen Ersatz zu CalB gibt. Durch die Etablierung der CalB-Expression in E.coli wurde die entscheidende Voraussetzung zur Optimierung der noch verbesserungswürdigen Enantioselektivität, vor allem in der Umesterungsreaktion, sowie der noch geringen Thermostabilität geschaffen. Der in dieser Arbeit verfolgte Ansatz der gerichteten Evolution zeigte auf, dass bei evolutiven Mutagenesestrategien stets mehrere Variablen existieren, deren Auswirkungen auf das Ergebnis gegeneinander gewichtet werden müssen. So sollte die Variabilität der Mutantenbibliotheken hoch sein, um Klone mit möglichst neuen Kombinationen von gewünschten Eigenschaften zu erhalten. Gleichzeitig sollte bedacht werden, dass die strukturelle Stabilität der Mutanten mit steigender Variabilität sinkt, so dass der verfügbare Sequenzraum stets begrenzt bleiben muss, um eine zufriedenstellende Ausbeute an funktionellen Klonen zu gewährleisten.Item Open Access Mechanistic studies on the DNA methyltransferases DNMT3A and DNMT3B(2021) Dukatz, Michael; Jeltsch, Albert (Prof. Dr.)In this work, both regulatory and catalytic mechanisms of de novo methyltransferases were investigated, which include interactions with other proteins and the specific recognition of the substrate sequence. Another part of this work strived to elucidate how enzymatic generation of 3-methylcytosine by DNMT3A can occur.Item Open Access Enzymatic asymmetric dihydroxylation of alkenes(2016) Gally, Christine; Hauer, Bernhard (Prof. Dr.)The introduction of chirality into C=C double bonds is of special interest in organic synthesis. In particular, the catalytic asymmetric dihydroxylation (AD) of alkenes has attracted considerable attention due to the facile transformation of the chiral diol products into valuable derivatives. By chemical means, the metal-catalyzed AD of olefins provides both stereo- and regiospecific cis-diol moieties. Next to their toxicity, however, these metal catalysts can also lead to byproduct formation as a result of oxidative fission. In nature, Rieske non-heme iron oxygenases (ROs) represent promising biocatalysts for this reaction since they are the only enzymes known to catalyze the stereoselective formation of vicinal cis-diols in one step. ROs are key enzymes in the degradation of aromatic hydrocarbons and can target a wide variety of different arenes. Despite their broad substrate scope, limited data is available for the conversion of unnatural substrates by this class of enzymes. To explore their potential for alkene oxidation, three ROs were tested for the oxyfunctionalization of a set of structurally diverse olefins including linear and cyclic arene-substituted alkenes, cycloalkenes as well as several terpenes. Naphthalene- (NDO), benzene- (BDO) and cumene dioxygenases (CDO) from different Pseudomonas strains where selected as they are amongst the RO enzymes that have already been reported to catalyze the oxidation of a small number of olefins. The majority of compounds from the selected substrate panel could be converted by NDO, BDO or CDO and products were either isolated and identified by NMR analysis or using the authentic standards. Dependent on the substrate, allylic monohydroxylation was found in addition to the corresponding diol products, a reaction which is chemically still most reliably achieved by the use of SeO2 in stoichiometric amounts. However, having been evolved for the dihydroxylation of aromatic compounds, wild type ROs displayed low conversions (< 50%) and modest stereoselectivities (≤ 80% ee/de) for several of the tested olefins. To overcome these limitations, changes in the active site topology of RO catalysts were introduced. A single targeted point mutation that was identified based on sequence and structural comparisons with other members of the RO family proved to be sufficient to generate BDO and CDO variants displaying remarkable changes in regio- and stereoselectivity for various substrates. In particular biotransformations with CDO M232A gave excellent stereoselectivities (≥ 95% ee/de) and good activities (> 90%) also for linear alkenes, which have been reported to be challenging substrates for RO-catalyzed oxyfunctionalizations. Site-saturation mutagenesis at position 232 in CDO revealed a correlation between the steric demand of the amino acid side chain and its influence on regio- and/ or stereoselectivities for styrene and indene. While the wild type enzyme almost exclusively catalyzed the dihydroxylation of the aromatic ring, the regioselectivity was shifted with decreasing side chain size to the terminal vinyl group of styrene, yielding up to 96% of the alkene-1,2-diol. For cis-1,2-indandiol formation, enantiocomplementary enzymes could be generated, a fact further highlighting the importance of position 232 for the engineering of ROs. Moreover, site-saturation mutagenesis of additional residues in the substrate binding pocket of CDO (F278, I288, I336 and F378) identified further positions having an influence on selectivity and product formation for alkene oxidation. To proof the applicability of ROs for organic synthesis, semi-preparative scale biotransformations (70 mg) of selected substrates were performed with CDO M232A. Without further optimization of the reaction set-up, products were successfully isolated in > 30% yield. In addition, up-scaling of (R)-limonene hydroxylation to 4 L in a bioreactor with growing cells gave final isolated product titers of 0.4 g L-1 even though substrate volatility and product toxicity diminished the yield. In conclusion, these examples demonstrated that a single point mutation was sufficient to transform CDO wild type into an efficient catalyst, furthermore constituting the first example of the rational engineering of CDO and BDO enzymes for the oxyfunctionalization of a broad range of alkenes.Item Open Access Cytosolic protein quality control of the orphan protein Fas2, a novel physiological substrate of the E3 ligase Ubr1(2013) Scazzari, Mario; Wolf, Dieter H. (Prof. Dr.)Cellular protein quality control (PQC) monitors the proper folding of polypeptides, assembly of protein subunits into protein complexes as well as the delivery of terminally misfolded proteins to degradation. The components of PQC known best at the moment are molecular chaperones and the ubiquitin proteasome system. In contrast to the well-described protein quality control system of the endoplasmic reticulum (ERAD), less is known about how misfolded proteins in the cytosol are recognized and degraded. The cytosolic fatty acid synthase complex (FAS) of Saccharomyces cerevisiae, which is composed of six Fas1- and six Fas2-subunits, is rather stable to proteolysis in vivo. In the absence of the Fas1 subunit (FAS1 deletion strain) the remaining Fas2 subunit becomes an orphan protein which is proteolytically unstable and is targeted to the 26S proteasome for degradation (Egner et al, 1993). In my work, I used the orphan Fas2 protein as object of investigation in order to identify new cellular components that are involved in the recognition and degradation of a natural unassembled protein subunit in S. cerevisiae. In addition, it was elucidated how these newly identified factors act in the quality control process of a naturally occurring orphan protein. Due to previous reports (Heck et al, 2010; Prasad et al, 2010) showing that some cytosolic misfolded proteins are imported into the nucleus for proteasomal degradation the cellular localization of orphan Fas2 was determined. Using laser-scanning microscopy it could be shown that C-terminally EGFP-tagged (enhanced green fluorescent protein) orphan Fas2 is localized to the cytosol, thus representing a potential substrate for the cytosolic quality control system (CytoQC). Furthermore, glycerol step density gradient centrifugation experiments revealed that the majority of the orphan Fas2 proteins are organized in high molecular assembly intermediates, which consist mostly of Fas2 homohexamers. By using the thermosensitive ssa1-45 mutant carrying in addition the gene deletions of SSA2, SSA3 and SSA4, it could be shown that the proteasomal degradation of the orphan protein is dependent on the Hsp70 chaperone Ssa1. It is likely that Ssa1 is required for keeping orphan Fas2 soluble. All members of the Hsp90-, Hsp100-, and Hsp110-chaperone family as well as the small heat shock proteins Hsp26 and Hsp42 were shown to have no effect on the degradation of orphan Fas2. Selected members of the Hsp40 chaperone family, including Apj1, Xdj1 and even Ydj1 also did not show a significant influence on the Ssa1-dependent elimination of the substrate. To prove whether other components of the UPS than the proteasome are required for degradation of orphan Fas2 different E2- and E3 gene deletion mutants were analyzed. It was found that the elimination of orphan Fas2 is strongly delayed in a strain carrying a UBC2 UBC4 double deletion. As single deletions of UBC2 and UBC4 have no significant effect on the turnover of the substrate, it can be assumed that these E2 enzymes have complementing functions in the degradation process of orphan Fas2. In a search for the responsible E3 ubiquitin ligase(s) required for orphan Fas2 degradation the E3 RING ligase Ubr1 was identified. Deletion of UBR1 leads to a strongly delayed degradation of orphan Fas2. The expression of an Ubr1 RING mutant (C1220S) or of an Ubr1 type-1 N-end rule mutant (D176) from a high-copy plasmid in the UBR1 deletion strain cannot complement the strongly delayed degradation of orphan Fas2. In contrast, the stabilization of the orphan protein in the UBR1 deletion strain is reversed, when the same strain harbours a high-copy plasmid expressing wild type Ubr1 or an Ubr1 type-2 N-end rule mutant (P406S) or even a cytosolically-located version of the nuclear E3 RING ligase San1 due to deletion of the nuclear localization sequence. Interaction studies revealed that the E3 RING ligase Ubr1 is physically associated with orphan Fas2. In addition, it was found that Ubr1 mutants harbouring either a defect RING domain or a defect in one of the N-end rule substrate-binding sites (type-1 or type-2) were still able to physically interact with orphan Fas2. Further studies showed that the physical association of orphan Fas2 and Ubr1 remains stable in the conditional ssa1-45 mutant carrying in addition deletions of SSA2 to SSA4. This indicates that already E3-bound orphan Fas2 may not require a functional peptide-binding domain of Ssa1 to maintain the physical contact to Ubr1. Finally, the AAA-ATPase Cdc48 was identified to be necessary for the elimination process of orphan Fas2. Cdc48 may function in the dissociation process of orphan Fas2 assembly intermediates, which mainly consist of Fas2-homohexamers.Item Open Access Endoplasmic reticulum associated protein degradation (ERAD): the function of Dfm1 and other novel components of the pathway(2011) Stolz, Alexandra; Wolf, Dieter H. (Prof. Dr.)Proteins, featured with a multitude of enzymatic activities as well as structural and other physiological functions are the main operators in the cell. Proteins are synthesized in the cytosol by ribosomes, which use m-RNA as a template to translate DNA based structural information into an amino acid sequence. During translation many errors occur resulting in so-called defective ribosomal products. In addition, stresses as heat, heavy metal ions and oxygen lead to the formation of partially unfolded and misfolded proteins. In human accumulation of these proteins results in severe diseases as are Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and many others. Therefore quality control systems exist, which recognize unfolded or misfolded proteins and support their folding process. If a protein is unable to reach its native conformation or to refold, the quality control system marks it as terminally misfolded and hands it over to the degradation machinery of the cell. In case of proteins of the secretory pathway this process is called endoplasmic reticulum quality control and associated protein degradation (ERQD). ERQD includes the recognition of the misfolded protein species, the trimming of glycan trees to signal misfolding, retrograde transport out of the ER lumen into the cytosol, ubiquitylation of the misfolded protein and degradation by the proteasome. The following thesis was engaged in the identification of new components of ERQD and tried to get insights into some mechanistic functions of the involved proteins. The proteins Dfm1, Mnl2 and Ubr1 were found as new components of the endoplasmic reticulum associated protein degradation (ERAD) machinery. Mnl2 was identified as a putative α-1,2-mannosidase. It was shown to be involved in the degradation of the misfolded glycoprotein CPY*. Most probably Mnl2 trims down the glycan trees of ERAD substrates, which are subsequently recognized by the lectin Yos9. Yos9 accelerates the degradation of terminally misfolded glycoproteins which expose these glycan structures. However, Yos9 does not seem to act only on glycosylated proteins but also seems to affect the degradation kinetics of unglycosylated ERAD substrates. In contrast to misfolded glycoproteins Yos9 delays degradation in case of the unglycosylated ERAD substrate CPY*0000. Most likely Yos9 has a chaperone like function in addition to its lectin function and provides more time for refolding of the misfolded protein. This function is, however, independent of its MRH domain that recognizes glycans. The other new ERAD component, the polytopic ER membrane localized Dfm1 protein, was found to form distinct complexes with the ligases Hrd1/Der3 and Doa10 as well as with the AAA type ATPase Cdc48. Degradation of different ERAD substrates containing a transmembrane domain was tested for Dfm1 involvement. The degradation and ubiquitylation of the ERAD-C substrate Ste6* was shown to depend on Dfm1. In addition, Dfm1 seems to be involved in a new degradation pathway, which acts independently of the ubiquitin ligases Hrd1/Der3 and Doa10. In the absence of these canonical ER ligases the cytosolic ubiquitin ligase Ubr1 seems to be recruited to maintain degradation of at least some ERAD substrates by the proteasome. Extraction of the misfolded protein species no longer depends on Cdc48 in all cases, but the driving force of other machines, most probably chaperones of the Ssa family of Hsp70 chaperones, were found to be sufficient to keep extraction and degradation of the substrates going.Item Open Access Modellierung der Adsorption von Proteinen an Oberflächen(2009) Steudle, Alexander Patrick; Pleiss, Jürgen (Prof. Dr.)Die Adsorption von Proteinen an Oberflächen ist ein äußerst komplexer Prozess, der in vielen Bereichen, wie der Medizin, Pharmazie, Nanotechnologie und Biotechnologie, von großer Bedeutung ist. In der vorliegenden Arbeit wurden computergestützte Methoden zur Vorhersage der Orientierung und des Bindungsverhaltens von Proteinen bei der Adsorption entwickelt. Die Arbeit konzentrierte sich hierbei auf die Gebiete der Ionenaustauschchromatografie, der hydrophoben Interaktionschromatografie und der Immobilisierung. Als untersuchte Proteine wurden Hühnereiweiß-Lysozym, die Hämdomäne der bakteriellen Cytochrom P450-BM3 Monooxygenase und humane monoklonale Antikörper verwendet. Lysozym gehört zu den am besten charakterisierten und meisten analytisch verwendeten Proteinen, da es billig und in großen Mengen hergestellt werden kann. Viele bisherige Untersuchungen wurden mit Lysozym durchgeführt und die adsorbierte Orientierung auf Kationenaustauschern konnte experimentell bestimmt werden. Der Adsorptionsvorgang von Cytochrom P450-BM3 ist von Interesse bei Immobilisierungen, welche zu verbesserten Eigenschaften bei Betrieb und Lagerung sowie zu einer einfachen Separation des Produkts führen. Wichtig ist hierbei eine Orientierung des Enzyms mit freiliegendem Substratzugang. Auch bei der Bindung auf beschichteten Elektroden, durch welche sich die Möglichkeit der Entwicklung analytischer und biokatalytischer Anwendungen sowie eine einfache und billige Elektronenquelle ergibt, ist die Orientierung wichtig. Ebenso wie der Substratzugang ist hier die korrekte Orientierung des elektronenakzeptierenden Bereichs wichtig, da dieser mit der Elektrodenoberfläche in Kontakt stehen sollte. Antikörper gehören zu den am häufigsten eingesetzten therapeutischen Proteinen. Ihre Produktion ist teuer, da sie meist über Protein A aufgereinigt werden. Es besteht großes Interesse an billigeren alternativen Verfahren, wie der Ionenaustauschchromatografie. Früher wurden Adsorptionsprozesse meist mit vereinfachten Modellen eines Proteins, beispielweise als kugelförmiges Gebilde, modelliert. Durch die zunehmende Aufklärung der Proteinstrukturen in atomarer Auflösung wurden auch weiter entwickelte Adsorptionsmodelle erstellt, jedoch wurden Proteine dabei meist als unflexible Objekte modelliert. In dieser Arbeit konnte gezeigt werden, dass es durch ein unflexibles Modell des Proteins, abhängig von der verwendeten Struktur und dem Abstand zur Oberfläche, bei der Modellierung von Adsorptionen zu Abweichungen von der experimentell bestimmten Orientierung kommen kann. Eine grobe Abschätzung der Bindungsorientierung ist bei einem kurzen Abstand aber noch möglich. Durch multiple Molekulardynamische Simulationen (MD-Simulationen), in welchen das Protein frei und flexibel an die Oberfläche binden konnte, hat sich am Beispiel Lysozym gezeigt, dass der Mittelwert der festgestellten gebundenen Orientierungen mit der experimentell bestimmten Orientierung, unabhängig von der zu Beginn verwendeten Proteinstruktur, übereinstimmte. Im Vergleich zeigten verschiedenen Proteine auch ein unterschiedliches Bindungsverhalten. Während bei Lysozym die Simulationen über einer negativ geladenen Oberfläche nur ein ähnliches Bindungsverhalten mit ähnlichen Bindungsorientierungen zeigte, erfolgte die Bindung der Cytochrom P450-BM3-Hämdomäne auf einer positiv geladenen Oberfläche aufgrund ihres starken Dipolmoments immer in gleicher Weise und mit gleicher Orientierung. Die Orientierung der Cytochrom P450-BM3-Hämdomäne in der frühen Phase der Bindung konnte auch mittels der rigiden Bestimmungsmethode festgestellt werden. Ein Kippen der kompletten Proteinstruktur nach dem ersten Kontakt zur Oberfläche wurde jedoch nur mittels MD-Simulationen vorhergesagt. Es konnte am Modell gezeigt werden, dass die adsorbierte Orientierung auf einer positiv geladenen Oberfläche zu einer Beeinträchtigung des Substratzugangs führt und, im Falle der Immobilisierung auf einer positiv geladenen Adsorberoberfläche, welche beispielsweise bei beschichteten Elektroden eingesetzt wird, eine ungünstige Ausgangsorientierung für die Elektronenübertragung vorliegt. Mittels MD-Simulationen der Cytochrom P450-BM3-Hämdomäne über verschiedenen Anionenaustauscherliganden konnte eine Korrelation der Bindungsenergien bei verschiedenen Salzkonzentrationen mit experimentell gemessenen chromatografischen Daten bestimmt werden. MD-Simulationen mit Antikörper waren durch die rechenintensiven, langreichweitigen Wechselwirkungen zwischen Adsorber und Protein im Rahmen der zur Verfügung stehenden technischen Möglichkeiten nicht durchführbar. Es konnten dennoch die Regionen, die bei der Aufreinigung mittels Ionenaustauschchromatografie Einfluss auf die Retention nehmen und somit für eine Optimierung des Proteins für den Aufreinigungsprozess infrage kommen, beispielsweise durch gezielte Mutationen in diesem Bereich, an der Proteinoberfläche mittels eines starren Modells bestimmt werden.Item Open Access The unfolded protein response in fission yeast : Ire1 modulates stability of select mRNAs to maintain protein homeostasis(2013) Kimmig, Philipp; Wolf, Dieter (Prof. Dr.)Virtually all proteins that eukaryotic cells display on their surface or that are secreted into the extracellular spare are first folded and assembled in the membrane-surrounded organelle endoplasmic reticulum (ER). Only properly folded and assembled proteins depart from the ER to the cell surface. If the ER does not have enough capacity to fold, a condition termed “ER stress”, a signal pathway called the “Unfolded Protein Response” (UPR), is switched on to increase the protein folding capacity, to expand the surface area and volume of the compartment. All eukaryotic cells, from unicellular yeasts to mammalian cells, contain a highly conserved protein-folding sensor Ire1. In all species analyzed to date, Ire1, an ER membrane-resident kinase/endoribonuclease, is known to activate the UPR through an unconventional messenger RNA (mRNA) splicing mechanism to induce translation of a potent transcription factor Hac1 (in yeast) or XBP1 (in metazoans). This unique splicing event provides the switch that drives a comprehensive gene expression program in which the production of ER components is increased to boost the protein folding capacity of the compartment. In this thesis an organism is identified, the yeast Schizosaccharomyces pombe, in which the UPR does not involve mRNA splicing or the initiation of a gene expression program to increase the folding capacity of the ER. Rather Schizosaccharomyces pombe lacking, a Hac1/XBP1 ortholog, utilizes Ire1 RNase activity to an entirely different end. We found that activation of Ire1 in S. pombe leads to the decay of a specific class of mRNAs that all encode proteins entering the ER. Interestingly, the set of down-regulated mRNA targets are particularly enriched for those encoding proteins involved in sterol metabolism, suggesting a potential qualitative change of the physiology of the cell. The deletion of the cytosolic mRNA degradation pathway shows an accumulation of RNA cleavage fragments of the down-regulated mRNA targets upon ER stress, an event by means that the Ire1 endonuclease directly cleaves these mRNAs. Intriguingly, the down-regulated mRNAs contain a short three-nucleotide base UG/C consensus at the Ire1 cut sites where cleavage occurs after G. Thus, rather than increasing the protein folding capacity of the ER when faced with an increased protein folding load, S. pombe cells correct the imbalance by decreasing the load via mRNA cleavage. Besides decreasing the ER load, a single mRNA—the mRNA that encodes the molecular chaperone BiP, which is one of the major protein-folding components in the ER—uniquely escapes this decay. Rather then being degraded, Ire1 truncates Bip1 mRNA in its 3’ UTR, which—counter-intuitively stabilizes the non-polyadenylated 5’ fragment and results in increased Bip1 translation. Decreasing the protein load by selective mRNA degradation and the single up-regulation of the major chaperone in the ER illustrate how a universally conserved machinery has been invented to maintain ER homeostasis in fission yeast.Item Open Access Systematische Analyse von Epoxidhydrolasen : Erstellung einer familienspezifischen Datenbank, Entwicklung einer strukturbezogenen Klassifizierung und Amplifikation unbekannter Epoxidhydrolasen(2003) Barth, Sandra; Schmid, Rolf D. (Prof. Dr.)Im Laufe dieser Arbeit wurde eine systematische Analyse an 93 Epoxidhydrolase (EH) Sequenzen durchgeführt. Ein Vergleich der drei bekannten EH Strukturen aus Agrobacterium radiobacter, Mus musculus und Aspergillus niger zeigte die hohe Konservierung des a/b Hydrolase Folds und die Existenz zweier variabler Loop-Regionen, dem NC-und dem Cap-Loop. Aus dem Multisequenz-Alignment der 93 EHs wurden die Loop-Längen aller EHs bestimmt und in einem Diagramm gegeneinander aufgetragen. Hierbei bildeten sich drei nach Superfamilien und Organismengruppen getrennte Cluster. Jedes Cluster enthält eine der drei bekannten Strukturen. Unter der Annahme, dass ähnliche Loop-Längen eine ähnliche Struktur bedingen, konnten Homologiemodelle von fünf EHs erstellt werden. Vergleiche der Substratspektren mit der Cluster Zugehörigkeit führten zu der Annahme, dass Loop-Länge und Substratspezifität korrelieren, da z.B. nur für EHs mit langen Cap-Loops der Umsatz epoxidierter Fettsäuren beschrieben wurde. Mit dem Programm CODEHOP wurden degenerierte familienspezifische Primer erstellt und an zwei bakteriellen Organismen getestet. Aus Streptomyces antibioticus Tü4, welcher eine EH Aktivität gegen Styroloxid aufweist und Rhodococcus ruber LU760 konnten jeweils Fragmente mit signifikanter Homologie zu EHs amplifiziert werden. Der zweite Teil dieser Arbeit befaßt sich mit der Erstellung und Auswertung einer familienspezifischen Datenbank auf der Grundlage der Lipase Engineering Database (LED). Die Epoxidhydrolase/Haloalkandehalogenase (EH/HD) Datenbank enthält 397 Sequenz-einträge, 305 Proteineinträge und für 19 dieser Proteineinträge 51 Strukturdatensätze. Neben EHs und HDs enthält die Datenbank weitere Enzymfamilien, die in 14 homologe Familien und zwei Superfamilien eingeteilt wurden. Untersuchungen der Strukturen aus EH/HD Datenbank und LED zeigten, dass trotz massiver struktureller Unterschiede, zwischen den Strukturen dieser beiden Datenbanken, das katalytische Zentrum strukturell in allen a/b Hydrolasen erhalten ist. Auch das für Lipasen ermittelte Anker-Konzept für die Stabilisierung des Oxyanionholes greift bei den Proteinen der EH/HD Datenbank. Für das hochkonservierte GXGXS-Motiv konnte eine mögliche strukturrelevante Funktion entwickelt werden, die seine konservierte Struktur und Lage erklärt.Item Open Access Microarray and molecular genetic analysis of aberrant splicing in human drug metabolizing cytochromes P450 CYP2D6 and CYP2B6(2008) Hofmann, Marco Hans; Schmid, Rolf (Prof. Dr.)This study was devoted to the detection of alternative splicing within the Cytochrome P450 enzymes 2D6 and 2B6, mapping of the most common splice variants and to draw connections to certain single nucleotide polymorphisms (SNPs) and alleles. For both enzymes a splicing sensitive microarray was developed. The microarray was produced and optimized in all steps including the oligonucleotide probe design, microarray processing and target preparation, optimization of hybridization conditions and the development of a new data quantification method for the used probe design. For the developed splicing platform a design was chosen based on 5 different probes. Within the CYP2D6 gene it was known that the SNP 2988G>A (allele *41) in intron 6 shifts splicing towards a variant lacking exon 6, what explains the intermediate phenotype within allele *41. The splicing platform verified this splicing aberration in allele *41. Using the microarry specific splicing patterns were monitored in human liver tissue within the most common alleles of CYP2D6 *1, *2, *4 and *41. It could be observed that within mRNA from allele *41 carriers additionally to the known transcript variant, which is lacking exon 6, total or partial retention of intron 5 and 6 was enhanced. Transcript patterns of CYP2D6*1 and *2 were similar with 5 times higher amount of the full functional transcript (NP), including all nine exons, compared to allele *41. The splicing array showed to be a valuable tool not only for detection of splicing variants in human liver tissue but additionally for detection for allele specific splicing patterns. The existence of highly homologous Cytochrome P450 pseudogenes, which in some cases, as in CYP2D7 also express alternative splicing variants, results in a major problem of interpreting the data from splicing arrays. The developed splicing platform is the first existing array with which gene and pseudogene specific transcript patterns can be monitored individually. The microarray platform can be easily transferred to other genes as shown for the second gene CYP2B6. Alternative splicing in this gene was so far only reported descriptive. CYP2B6 is a polymorphic human drug metabolizing cytochrome P450 with clinical relevance for several drug substrates including cyclophosphamide, bupropion and efavirenz. The common allele CYP2B6*6 [c. 516G>T, Q172H and c.785A>G, K262R] has previously been associated with lower expression in human liver and with increased plasma levels of efavirenz in HIV patients, but the molecular mechanism has remained unclear. With the developed splicing array for CYP2B6 allele specific splicing patterns were observed comparing CYP2B6*6 and CYP2B6*1. This lead to the idea that alternative splicing might play an important role in allele *6. This was investigated in more detail using RNA originating from well-documented human liver tissue. Analysis of mRNA in this tissue demonstrated that additional unknown splicing variants exist (SV8, SV7, SV9). Investigations in human liver tissue using RT-PCR and sequencing showed that the most common transcript in CYP2B6*6 was not the normal transcript (NP) but an alternative splicing transcript lacking exons 4 to 6 (SV1). SV1 was tightly associated with the allele*6 and apparently also with the rare variant c.777C>A (CYP2B6*3). The observations lead to the assumptions that alternative splicing might explain the decreased function observed in allele CYP2B6*6. Further investigations in this direction were performed by cloning CYP2B6 minigene constructs including all nine exons and additional intronic regions. Minigenes carrying the single c.785A>G polymorphism or the rare c.777C>A variant resulted in normal and intermediate expression phenotypes, respectively. In conclusion, the mechanism of the common allele*6 involves predominantly a pretranslational mechanism resulting in decreased enzyme expression. Aberrant splicing is leading to reduce functional mRNA, protein and activity. These results establish the SNP c.516G>T, a nonsynonymous exonic mutation, as the causal sequence variation for severely decreased expression and function associated with CYP2B6*6. This work emphasizes the role of SNPs in non-consensus splicing elements such as exonic and intronic splicing enhancers as well as the clinical relevance of alternative splicing in context of adverse drug reactions. In both investigated genes CYP2D6 as well as in CYP2B6 there exists a common allele (CYP2D6*41 and CYP2B6*6, respectively) in which aberrant splicing results in reduced amounts of functional transcript, reduced amount of protein and enzyme activity. The findings establishes the SNP c.516G>T as the causal sequence variation that can now be reliably used in pharmacogenetic studies in various clinical settings including prediction of drug plasma concentration, toxicity, drug effectiveness and dose adjustment.