03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    ItemOpen Access
    Rapid detection of neurotoxic insecticides in food using disposable acetylcholinesterase-biosensors and simple solvent extraction
    (2002) Schulze, Holger; Schmid, Rolf D.; Bachmann, Till T.
    The extensive use of pesticides to protect agricultural crops necessitates reliable tools for the detection of residues in food and water, thus ensuring environmental protection and consumer safety. Neuroinhibitors such as organophosphates and carbamates in particular, represent a potential hazard to human health. These compounds are frequently found in food but conventional methods of analysis are limited as they are either time consuming or not sufficiently sensitive. As a result, a rapid and sensitive biosensor test based on AChE-inhibition was developed. The disposable AChE-biosensor was directly applied in solvent extracts of food samples using isooctane as extraction solvent. A complete assay could be performed in less than 2 hours. Recovery rates of 84 % were obtained in tests with spiked orange juice samples. Tests in food samples with a lower water content resulted in reduced recovery rates (44 % for peach pap baby food). Phosphorothionate insecticides could be detected after direct oxidation in food with N-bromosuccinimide and solvent extraction. The assay displayed a detection limit of 2 μg/kg paraoxon which was sufficient for the monitoring of maximum residue limits in food according to EU regulations.
  • Thumbnail Image
    ItemOpen Access
    Screen-printed bienzymatic sensor based on sol-gel immobilized Nippostrongylus brasiliensis acetylcholinesterase and a cytochrome P450 BM-3 (CYP102-A1) mutant
    (2006) Waibel, Michael; Schulze, Holger; Huber, Norbert; Bachmann, Till T.
    Here we describe the development of a bienzymatic biosensor that simplifies the sample pretreatment steps for insecticide detection, and enables the highly sensitive detection of phosphorothionates in food. These compounds evolve their inhibitory activity towards acetylcholinesterases (AChEs) only after oxidation which is performed in vivo by P450 monooxygenases. Consequently, phosphorothionates require a suitable sample pretreatment by selective oxidation to be detectable in AChE based systems. In this study, enzymatic phosphorothionate activation and AChE inhibition were integrated in a single biosensor unit. A triple mutant of cytochrome P450 BM-3 (CYP 102-A1) and Nippostrongylus brasiliensis AChE (NbAChE) were immobilized using a fluoride catalyzed sol-gel process. Different sol-gel types were fabricated and characterized regarding enzyme loading capacity and enzyme activity containment. The enzyme sol-gel itself already proved to be suitable for the highly sensitive detection of paraoxon and parathion in a spectrometric assay. A method for screen-printing of this enzyme sol-gel on thick film electrodes was developed. Finally, amperometric biosensors containing coimmobilized NbAChE and the cytochrome P450 BM-3 mutant were produced and characterized with respect to signal stability, organophosphate detection, and storage stability. The detection limits achieved were 1 μg/L for paraoxon and 10 μg/L for parathion in its oxidized form, which is according to EC regulations the highest tolerable pesticide concentration in infant food.
  • Thumbnail Image
    ItemOpen Access
    Development, validation, and application of an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food
    (2002) Schulze, Holger; Scherbaum, Ellen; Anastassiades, Michelangelo; Vorlová, Sandra; Schmid, Rolf D.; Bachmann, Till T.
    A highly sensitive and rapid food-screening test based on disposable screen-printed biosensors was developed, which is suitable for monitoring infant food. The exposure of infants and children to neurotoxic organophosphates and carbamates is of particular concern because of their higher susceptibility to adverse effects. The European Union has therefore set a very low limit for pesticides in infant food which must not contain concentrations exceeding 10 μg/kg for any given pesticide. The maximum residue limit (MRL) has been set to be near the determination threshold that is typically achieved for pesticides with traditional analytical methods. The biosensor method could detect levels lower than 5 μg/kg and thus clearly fulfills the demands of the EU. To substantiate these measurements, recovery rates were determined and amounted on average to 104 % in food. Matrix effects were eliminated by the introduction of a special electrode treatment. The test was compared with two traditional pesticide multiresidue analysis methods (GC/MS, LC/MS) using 26 fruit and vegetable samples from local markets and 23 samples of processed infant food from Germany, Spain, Poland and the USA. Three infant food samples exceeded the MRL of 10 μg/kg when analyzed by either biosensor test or multiresidue methods.
  • Thumbnail Image
    ItemOpen Access
    Design of acetylcholinesterases for biosensor applications
    (2003) Schulze, Holger; Vorlová, Sandra; Villatte, Francois; Bachmann, Till T.; Schmid, Rolf D.
    In recent years, the use of acetylcholinesterases (AChEs) in biosensor technology has gained enormous attention, in particular with respect to insecticide detection. The principle of biosensors using AChE as a biological recognition element is based on the inhibition of the enzyme’s natural catalytic activity by the agent that is to be detected. The advanced understanding of the structure-function-relationship of AChEs serves as the basis for developing enzyme variants, which, compared to the wild type, show an increased inhibition efficiency at low insecticide concentrations and thus a higher sensitivity. This review describes different expression systems that have been used for the production of recombinant AChE. In addition, approaches to purify recombinant AChEs to a degree that is suitable for analytical applications will be elucidated as well as the various attempts that have been undertaken to increase the sensitivity of AChE to specified organophosphates and carbamates using side-directed mutagenesis and employing the enzyme in different assay formats.
  • Thumbnail Image
    ItemOpen Access
    Immobilisation of P450 BM-3 and an NADP+ cofactor recycling system : towards a technical application of heme-containing monooxygenases in fine chemical synthesis
    (2003) Maurer, Steffen Christian; Schulze, Holger; Schmid, Rolf D.; Urlacher, Vlada B.
    Cytochrome P450 monooxygenases are potentially a very useful class of hydroxylation catalysts; they are able to introduce oxygen at activated and non-activated carbon-hydrogen bonds and thus lead to regio- and/or stereochemically pure compounds. However, this potential is lowered by their intrinsic low activity and inherent instability. P450-catalysed biotransformations require a constant supply of NAD(P)H, making the process an expensive one. To render these catalysts more suitable for industrial biocatalysis, the immobilisation of P450 BM-3 (CYP 102A1) from Bacillus megaterium in a sol-gel matrix was combined with a cofactor recycling system based on NADPƒy-dependent formate dehydrogenase (EC 1.2.1.2) from Pseudomonas sp. 101 and tested for practical applicability. This approach was used for the conversion of £]-ionone, octane and naphthalene to the respective hydroxy-compounds with DMSO as cosolvent using sol-gel immobilised P450 BM-3 mutants.