03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    CHEMampere : technologies for sustainable chemical production with renewable electricity and CO2, N2, O2, and H2O
    (2022) Klemm, Elias; Lobo, Carlos M. S.; Löwe, Armin; Schallhart, Verena; Renninger, Stephan; Waltersmann, Lara; Costa, Rémi; Schulz, Andreas; Dietrich, Ralph‐Uwe; Möltner, Lukas; Meynen, Vera; Sauer, Alexander; Friedrich, K. Andreas
    The chemical industry must become carbon neutral by 2050, meaning that process‐, energy‐, and product‐related CO2 emissions from fossil sources are completely suppressed. This goal can only be reached by using renewable energy, secondary raw materials, or CO2 as a carbon source. The latter can be done indirectly through the bioeconomy or directly by utilizing CO2 from air or biogenic sources (integrated biorefinery). Until 2030, CO2 waste from fossil‐based processes can be utilized to curb fossil CO2 emissions and reach the turning point of global fossil CO2 emissions. A technology mix consisting of recycling technologies, white biotechnology, and carbon capture and utilization (CCU) technologies is needed to achieve the goal of carbon neutrality. In this context, CHEMampere contributes to the goal of carbon neutrality with electricity‐based CCU technologies producing green chemicals from CO2, N2, O2, and H2O in a decentralized manner. This is an alternative to the e‐Refinery concept, which needs huge capacities of water electrolysis for a centralized CO2 conversion with green hydrogen, whose demand is expected to rise dramatically due to the decarbonization of the energy sector, which would cause a conflict of use between chemistry and energy. Here, CHEMampere's core reactor technologies, that is, electrolyzers, plasma reactors, and ohmic resistance heating of catalysts, are described, and their technical maturity is evaluated for the CHEMampere platform chemicals NH3, NOx, O3, H2O2, H2, CO, and CxHyOz products such as formic acid or methanol. Downstream processing of these chemicals is also addressed by CHEMampere, but it is not discussed here.
  • Thumbnail Image
    ItemOpen Access
    Hydrogen-tolerant La0.6Ca0.4Co0.2Fe0.8O3-d oxygen transport membranes from ultrasonic spray synthesis for plasma-assisted CO2 conversion
    (2023) Rashid, Aasir; Lim, Hyunjung; Plaz, Daniel; Escobar Cano, Giamper; Bresser, Marc; Wiegers, Katharina-Sophia; Confalonieri, Giorgia; Baek, Sungho; Chen, Guoxing; Feldhoff, Armin; Schulz, Andreas; Weidenkaff, Anke; Widenmeyer, Marc
    La0.6Ca0.4Co1-xFexO3-d in its various compositions has proven to be an excellent CO2-resistant oxygen transport membrane that can be used in plasma-assisted CO2 conversion. With the goal of incorporating green hydrogen into the CO2 conversion process, this work takes a step further by investigating the compatibility of La0.6Ca0.4Co1-xFexO3-d membranes with hydrogen fed into the plasma. This will enable plasma-assisted conversion of the carbon monoxide produced in the CO2 reduction process into green fuels, like methanol. This requires the La0.6Ca0.4Co1-xFexO3-d membranes to be tolerant towards reducing conditions of hydrogen. The hydrogen tolerance of La0.6Ca0.4Co1-xFexO3-d (x = 0.8) was studied in detail. A faster and resource-efficient route based on ultrasonic spray synthesis was developed to synthesise the La0.6Ca0.4Co0.2Fe0.8O3-d membranes. The La0.6Ca0.4Co0.2Fe0.8O3-d membrane developed using ultrasonic spray synthesis showed similar performance in terms of its oxygen permeation when compared with the ones synthesised with conventional techniques, such as co-precipitation, sol-gel, etc., despite using 30% less cobalt.