03 Fakultät Chemie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/4

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    ItemOpen Access
    The effect of pooling on the detection of the nucleocapsid protein of SARS-CoV-2 with rapid antigen tests
    (2021) Berking, Tim; Lorenz, Sabrina; Ulrich, Alexander; Greiner, Joachim; Kervio, Eric; Bremer, Jennifer; Wege, Christina; Kleinow, Tatjana; Richert, Clemens
    The COVID-19 pandemic puts significant stress on the viral testing capabilities of many countries. Rapid point-of-care (PoC) antigen tests are valuable tools but implementing frequent large scale testing is costly. We have developed an inexpensive device for pooling swabs, extracting specimens, and detecting viral antigens with a commercial lateral flow test for the nucleocapsid protein of SARS-CoV-2 as antigen. The holder of the device can be produced locally through 3D printing. The extraction and the elution can be performed with the entire set-up encapsulated in a transparent bag, minimizing the risk of infection for the operator. With 0.35 mL extraction buffer and six swabs, including a positive control swab, 43 ± 6% (n = 8) of the signal for an individual extraction of a positive control standard was obtained. Image analysis still showed a signal-to-noise ratio of approximately 2:1 at 32-fold dilution of the extract from a single positive control swab. The relative signal from the test line versus the control line was found to scale linearly upon dilution (R2 = 0.98), indicating that other pooling regimes are conceivable. A pilot project involving 14 participants and 18 pooled tests in a laboratory course at our university did not give any false positives, and an individual case study confirmed the ability to detect a SARS-CoV-2 infection with five-fold or six-fold pooling, including one swab from a PCR-confirmed COVID patient. These findings suggest that pooling can make frequent testing more affordable for schools, universities, and similar institutions, without decreasing sensitivity to an unacceptable level.
  • Thumbnail Image
    ItemOpen Access
    Autonomous adaption of intelligent humidity‐programmed hydrogel patches for tunable stiffness and drug release
    (2023) Pflumm, Stephan; Wiedemann, Yvonne; Fauser, Dominik; Safaraliyev, Javidan; Lunter, Dominique; Steeb, Holger; Ludwigs, Sabine
    Intelligent humidity‐programmed hydrogel patches with high stretchability and tunable water‐uptake and ‐release are prepared by copolymerization and crosslinking of N‐isopropylacrylamide and oligo(ethylene glycol) comonomers. These intelligent elastomeric patches strongly respond to different humidities and temperatures in terms of mechanical properties which makes them applicable for soft robotics and smart skin applications where autonomous adaption to environmental conditions is a key requirement. It is shown that beyond using the hydrogel in the conventional state in aqueous media, new patches can be controlled by relative humidity. This humidity programming of the patches allows to tune drug release kinetics, opening potential application fields such as skin wound therapy and personalized medication. In situ dynamic‐mechanical measurements show a huge dependence on temperature and humidity. The glass transition temperature Tg shifts from around 60 °C at dry conditions to below 0 °C for 75% r.h. and higher. The storage modulus is tunable over more than four orders of magnitude from 0.6 up to 400 MPa. Time‐temperature superposition in master curves allows to extract relaxation times over 14 orders of magnitude. With strains at break of over 200% the patches are compliant with human skin and therefore patient‐friendly in terms of adapting to movements.
  • Thumbnail Image
    ItemOpen Access
    Soft urinary bladder phantom for endoscopic training
    (2021) Choi, Eunjin; Waldbillig, Frank; Jeong, Moonkwang; Li, Dandan; Goyal, Rahul; Weber, Patricia; Miernik, Arkadiusz; Grüne, Britta; Hein, Simon; Suarez-Ibarrola, Rodrigo; Kriegmair, Maximilian Christian; Qiu, Tian
    Bladder cancer (BC) is the main disease in the urinary tract with a high recurrence rate and it is diagnosed by cystoscopy (CY). To train the CY procedures, a realistic bladder phantom with correct anatomy and physiological properties is highly required. Here, we report a soft bladder phantom (FlexBlad) that mimics many important features of a human bladder. Under filling, it shows a large volume expansion of more than 300% with a tunable compliance in the range of 12.2 ± 2.8 - 32.7 ± 5.4 mL cmH2O-1 by engineering the thickness of the bladder wall. By 3D printing and multi-step molding, detailed anatomical structures are represented on the inner bladder wall, including sub-millimeter blood vessels and reconfigurable bladder tumors. Endoscopic inspection and tumor biopsy were successfully performed. A multi-center study was carried out, where two groups of urologists with different experience levels executed consecutive CYs in the phantom and filled in questionnaires. The learning curves reveal that the FlexBlad has a positive effect in the endourological training across different skill levels. The statistical results validate the usability of the phantom as a valuable educational tool, and the dynamic feature expands its use as a versatile endoscopic training platform.
  • Thumbnail Image
    ItemOpen Access
    Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant giant cell tumor of bone
    (2020) Lutsik, Pavlo; Baude, Annika; Mancarella, Daniela; Öz, Simin; Kühn, Alexander; Toth, Reka; Hey, Joschka; Toprak, Umut H.; Lim, Jinyeong; Nguyen, Viet Ha; Jiang, Chao; Mayakonda, Anand; Hartmann, Mark; Rosemann, Felix; Breuer, Kersten; Vonficht, Dominik; Grünschläger, Florian; Lee, Suman; Schuhmacher, Maren Kirstin; Kusevic, Denis; Jauch, Anna; Weichenhan, Dieter; Zustin, Jozef; Schlesner, Matthias; Haas, Simon; Park, Joo Hyun; Park, Yoon Jung; Oppermann, Udo; Jeltsch, Albert; Haller, Florian; Fellenberg, Jörg; Lindroth, Anders M.; Plass, Christoph
    The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes.
  • Thumbnail Image
    ItemOpen Access
    G protein-coupled estrogen receptor correlates with Dkk2 expression and has prognostic impact in ovarian cancer patients
    (2021) Fraungruber, Patricia; Kaltofen, Till; Heublein, Sabine; Kuhn, Christina; Mayr, Doris; Burges, Alexander; Mahner, Sven; Rathert, Philipp; Jeschke, Udo; Trillsch, Fabian
    Wnt pathway modulator Dickkopf 2 (Dkk2) and signaling of the G protein-coupled estrogen receptor (GPER) seem to have essential functions in numerous cancer types. For epithelial ovarian cancer (EOC), it has not been proven if either Dkk2 or the GPER on its own have an independent impact on overall survival (OS). So far, the correlation of both factors and their clinical significance has not systematically been investigated before. Expression levels of Dkk2 were immunohistochemically analyzed in 156 patient samples from different histologic subtypes of EOC applying the immune-reactivity score (IRS). Expression analyses were correlated with clinical and pathological parameters to assess for prognostic relevance. Data analysis was performed using Spearman’s correlations, Kruskal-Wallis-test and Kaplan-Meier estimates. Highest Dkk2 expression of all subtypes was observed in clear cell carcinoma. In addition, Dkk2 expression differed significantly (p<0.001) between low and high grade serous ovarian cancer. A significant correlation of Dkk2 with the cytoplasmic GPER expression was noted (p=0.001) but not for the nuclear estrogen receptor alpha (ERα) or beta (ERβ). Patients exhibiting both, high expression Dkk2 (IRS>4) and GPER (IRS>8), had a significantly better overall survival compared to patients with low expression (61 months vs. 33 months; p=0.024). Dkk2 and GPER expression correlates in EOC and combined expression of both is associated with improved OS. These findings underline the clinical significance of both pathways and indicate a possible prognostic impact as well as a potential for treatment strategies addressing interactions between estrogen and Wnt signaling in ovarian cancer.
  • Thumbnail Image
    ItemOpen Access
    Somatic cancer mutations in the MLL1 histone methyltransferase modulate its enzymatic activity and dependence on the WDR5/RBBP5/ASH2L complex
    (2017) Weirich, Sara; Kudithipudi, Srikanth; Jeltsch, Albert
    Somatic missense mutations in the mixed lineage leukemia 1 (MLL1) histone H3K4 methyltransferase are often observed in cancers. MLL1 forms a complex with WDR5, RBBP5, and ASH2L (WRA) which stimulates its activity. The MM-102 compound prevents the interaction between MLL1 and WDR5 and functions as an MLL1 inhibitor. We have studied the effects of four cancer mutations in the catalytic SET domain of MLL1 on the enzymatic activity of MLL1 and MLL1–WRA complexes. In addition, we studied the interaction of the MLL1 mutants with the WRA proteins and inhibition of MLL1–WRA complexes by MM-102. All four investigated mutations had strong effects on the activity of MLL1. R3903H was inactive and S3865F showed reduced activity both alone and in complex with WRA, but its activity was stimulated by the WRA complex. By contrast, R3864C and R3841W were both more active than wild-type MLL1, but still less active than the wild-type MLL1–WRA complex. Both mutants were not stimulated by complex formation with WRA, although no differences in the interaction with the complex proteins were observed. These results indicate that both mutants are in an active conformation even in the absence of the WRA complex and their normal control of activity by the WRA complex is altered. In agreement with this observation, the activity of R3864C and R3841W was not reduced by addition of the MM-102 inhibitor. We show that different cancer mutations in MLL1 lead to a loss or increase in activity, illustrating the complex and tumor-specific role of MLL1 in carcinogenesis. Our data exemplify that biochemical investigations of somatic tumor mutations are required to decipher their pathological role. Moreover, our data indicate that MM-102 may not be used as an MLL1 inhibitor if the R3864C and R3841W mutations are present. More generally, the efficacy of any enzyme inhibitor must be experimentally confirmed for mutant enzymes before an application can be considered.
  • Thumbnail Image
    ItemOpen Access
    PESIN conjugates for multimodal imaging : can multimerization compensate charge influences on cell binding properties? : a case study
    (2021) Hübner, Ralph; Paretzki, Alexa; von Kiedrowski, Valeska; Maspero, Marco; Cheng, Xia; Davarci, Güllü; Braun, Diana; Damerow, Helen; Judmann, Benedikt; Filippou, Vasileios; Dallanoce, Clelia; Schirrmacher, Ralf; Wängler, Björn; Wängler, Carmen
    Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.
  • Thumbnail Image
    ItemOpen Access
    Epigenetic modulation of radiation-induced diacylglycerol kinase alpha expression prevents pro-fibrotic fibroblast response
    (2021) Liu, Chun-Shan; Toth, Reka; Bakr, Ali; Goyal, Ashish; Islam, Md Saiful; Breuer, Kersten; Mayakonda, Anand; Lin, Yu-Yu; Stepper, Peter; Jurkowski, Tomasz P.; Veldwijk, Marlon R.; Sperk, Elena; Herskind, Carsten; Lutsik, Pavlo; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Popanda, Odilia
    Radiotherapy, a common component in cancer treatment, can induce adverse effects including fibrosis in co-irradiated tissues. We previously showed that differential DNA methylation at an enhancer of diacylglycerol kinase alpha (DGKA) in normal dermal fibroblasts is associated with radiation-induced fibrosis. After irradiation, the transcription factor EGR1 is induced and binds to the hypomethylated enhancer, leading to increased DGKA and pro-fibrotic marker expression. We now modulated this DGKA induction by targeted epigenomic and genomic editing of the DGKA enhancer and administering epigenetic drugs. Targeted DNA demethylation of the DGKA enhancer in HEK293T cells resulted in enrichment of enhancer-related histone activation marks and radiation-induced DGKA expression. Mutations of the EGR1-binding motifs decreased radiation-induced DGKA expression in BJ fibroblasts and caused dysregulation of multiple fibrosis-related pathways. EZH2 inhibitors (GSK126, EPZ6438) did not change radiation-induced DGKA increase. Bromodomain inhibitors (CBP30, JQ1) suppressed radiation-induced DGKA and pro-fibrotic marker expression. Similar drug effects were observed in donor-derived fibroblasts with low DNA methylation. Overall, epigenomic manipulation of DGKA expression may offer novel options for a personalized treatment to prevent or attenuate radiotherapy-induced fibrosis.
  • Thumbnail Image
    ItemOpen Access
    Effects of magnesium orotate, benfotiamine and a combination of vitamins on mitochondrial and cholinergic function in the TgF344-AD rat model of Alzheimer’s disease
    (2021) Viel, Christian; Brandtner, Adrian T.; Weißhaar, Alexander; Lehto, Alina; Fuchs, Marius; Klein, Jochen
    Glucose hypometabolism, mitochondrial dysfunction, and cholinergic deficits have been reported in early stages of Alzheimer’s disease (AD). Here, we examine these parameters in TgF344-AD rats, an Alzheimer model that carries amyloid precursor protein and presenilin-1 mutations, and of wild type F344 rats. In mitochondria isolated from rat hippocampi, we found reductions of complex I and oxidative phosphorylation in transgenic rats. Further impairments, also of complex II, were observed in aged (wild-type and transgenic) rats. Treatment with a “cocktail” containing magnesium orotate, benfotiamine, folic acid, cyanocobalamin, and cholecalciferol did not affect mitochondrial activities in wild-type rats but restored diminished activities in transgenic rats to wild-type levels. Glucose, lactate, and pyruvate levels were unchanged by age, genetic background, or treatment. Using microdialysis, we also investigated extracellular concentrations of acetylcholine that were strongly reduced in transgenic animals. Again, ACh levels in wild-type rats did not change upon treatment with nutrients, whereas the cocktail increased hippocampal acetylcholine levels under physiological stimulation. We conclude that TgF344-AD rats display a distinct mitochondrial and cholinergic dysfunction not unlike the findings in patients suffering from AD. This dysfunction can be partially corrected by the application of the “cocktail” which is particularly active in aged rats. We suggest that the TgF344-AD rat is a promising model to further investigate mitochondrial and cholinergic dysfunction and potential treatment approaches for AD.
  • Thumbnail Image
    ItemOpen Access
    Neocarzilin inhibits cancer cell proliferation via BST‑2 degradation, resulting in lipid raft-trapped EGFR
    (2024) Braun, Josef; Hu, Yudong; Jauch, Adrian T.; Gronauer, Thomas F.; Mergner, Julia; Bach, Nina C.; Traube, Franziska R.; Zahler, Stefan; Sieber, Stephan A.
    Neocarzilin (NCA) is a natural product exhibiting potent antimigratory as well as antiproliferative effects. While vesicle amine transport protein 1 (VAT-1) was previously shown to inhibit migration upon NCA binding, the molecular mechanisms responsible for impaired proliferation remained elusive. We here introduce a chemical probe closely resembling the structural and stereochemical features of NCA and unravel bone marrow stromal antigen 2 (BST-2) as one of the targets responsible for the antiproliferative effect of NCA in cancer cells. The antiproliferative mechanism of NCA was confirmed in corresponding BST-2 knockout (KO) HeLa cells, which were less sensitive to compound treatment. Vice versa, reconstitution of BST-2 in the KO cells again reduced proliferation upon NCA addition, comparable to that of wild-type (wt) HeLa cells. Whole proteome mass spectrometric (MS) analysis of NCA-treated wt and KO cancer cells revealed regulated pathways and showed reduced levels of BST-2 upon NCA treatment. In-depth analysis of BST-2 levels in response to proteasome and lysosome inhibitors unraveled a lysosomal degradation path upon NCA treatment. As BST-2 mediates the release of epidermal growth factor receptor (EGFR) from lipid rafts to turn on proliferation signaling pathways, reduced BST-2 levels led to attenuated phosphorylation of STAT3. Furthermore, fluorescence microscopy confirmed increased colocalization of EGFR and lipid rafts in the presence of NCA. Overall, NCA represents a versatile anticancer natural product with a unique dual mode of action and unconventional inhibition of proliferation via BST-2 degradation.