10 Fakultät Wirtschafts- und Sozialwissenschaften

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/11

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Profiles of motor-cognitive interference in Parkinson’s disease : the Trail-Walking Test to discriminate between motor phenotypes
    (2022) Klotzbier, Thomas J.; Schott, Nadja; Almeida, Quincy J.
    Background and Aims. Most research on Parkinson’s disease (PD) focuses on describing symptoms and movement characteristics. Studies rarely focus on the early detection of PD and the search for suitable markers of a prodromal stage. Early detection is important, so treatments that may potentially change the course of the disease can be attempted early on. While gait disturbances are less pronounced in the early stages of the disease, the prevalence, and severity increase with disease progression. Therefore, postural instability and gait difficulties could be identified as sensitive biomarkers. The aim was to evaluate the discriminatory power of the Trail-Walking Test (TWT; Schott, 2015) as a potential diagnostic instrument to improve the predictive power of the clinical evaluation concerning the severity of the disease and record the different aspects of walking. Methods. A total of 20 older healthy (M = 72.4 years, SD = 5.53) adults and 43 older adults with PD and the motor phenotypes postural instability/gait difficulty (PIGD; M = 69.7 years, SD = 8.68) and tremor dominant (TD; M = 68.2 years, SD = 8.94) participated in the study. The participants performed a motor-cognitive dual task (DT) of increasing cognitive difficulty in which they had to walk a given path (condition 1), walk to numbers in ascending order (condition 2), and walk to numbers and letters alternately and in ascending order (condition 3). Results. With an increase in the cognitive load, the time to complete the tasks (seconds) became longer in all groups, F(1.23, 73.5) = 121, p < 0.001, ɳ2p = 0.670. PIGD showed the longest times in all conditions of the TWT, F(2, 60) = 8.15, p < 0.001, ɳ2p = 0.214. Mutual interferences in the cognitive and motor domain can be observed. However, clear group-specific patterns cannot be identified. A differentiation between the motor phenotypes of PD is especially feasible with the purely motor condition (TWT-M; AUC = 0.685, p = 0.44). Conclusions. PD patients with PIGD must be identified by valid, well-evaluated clinical tests that allow for a precise assessment of the disease’s individual fall risk, the severity of the disease, and the prognosis of progression. The TWT covers various aspects of mobility, examines the relationship between cognitive functions and walking, and enables differentiation of the motor phenotypes of PD.
  • Thumbnail Image
    ItemOpen Access
    An interrater reliability study of gait analysis systems with the dual task paradigm in healthy young and older adults
    (2021) Klotzbier, Thomas J.; Wollesen, Bettina; Vogel, Oliver; Rudisch, Julian; Cordes, Thomas; Jöllenbeck, Thomas; Vogt, Lutz
    Background and aims: One reason for the controversial discussion of whether the dual task (DT) walking paradigm has an added value for diagnosis in clinical conditions might be the use of different gait measurement systems. Therefore, the purpose was 1) to detect DT effects of central gait parameters obtained from five different gait analysis devices in young and old adults, 2) to assess the consistency of the measurement systems, and 3) to determine if the absolut and proportional DT costs (DTC) are greater than the system-measurement error under ST. Methods: Twelve old (72.2 ± 7.9y) and 14 young adults (28.3 ± 6.2y) walked a 14.7-m distance under ST and DT at a self-selected gait velocity. Interrater reliability, precision of the measurement and sensitivity to change were calculated under ST and DT. Results: An age effect was observed in almost all gait parameters for the ST condition. For DT only differences for stride length (p < .029, ɳ2 p = .239) as well as single and double limb support (p = .036, ɳ2 p = .227; p = .034, ɳ2 p = .218) remained. The measurement systems showed a lower absolute agreement compared to consistency across all systems. Conclusions: When reporting DT effects, the real changes in performance and random measurement errors should always be accounted for. These findings have strong implications for interpreting DT effects.
  • Thumbnail Image
    ItemOpen Access
    CIEMER in action : from development to application of a co-creative, interdisciplinary exergame design process in XR
    (2024) Retz, Celina; Klotzbier, Thomas J.; Ghellal, Sabiha; Schott, Nadja
    Introduction: Motor-cognitive learning is crucial for achieving and maintaining wellbeing. Exergames can effectively facilitate this type of learning due to their inherent qualities of exertion and game-related disciplines. These qualities can create effectiveness, enjoyment, and meaning in the lives of individuals. To address these aspects equally, the design process for exergame interventions needs to be interdisciplinary from the beginning. Objective: This paper aims to (1) enhance an exergame design process model for interdisciplinary co-creation (CIEM) by an Extended Reflection part (CIEMER). Furthermore, it aims to (2) show a formal process for making the abstract model applicable. In doing so, (3) this paper will also derive methods for conducting the process in an academic seminar. Methods: The study employed the CIEMER to conduct a 2-month academic seminar with 20 students. The seminar consisted of a 3-day intensive workshop, a 6-week work phase, and a 1-week testing phase, creating four Extended Reality prototypes. We used a mixed methods approach to evaluate the model, including feedback interviews with external experts, internal surveys, and written reflections from student designers. Results: Four motor-cognitive learning prototypes in Extended Reality were created using the CIEMER. External expert evaluations highlighted the prototypes’ alignment with effective, enjoyable, and meaningful objectives and potential efficacy while noting shortcomings in discipline-specific theoretical application. Internal feedback from students, collected via surveys and reflections, consistently showed positive outcomes in interdisciplinary collaboration and learning, underscoring the importance of an integrated approach in achieving project goals. Conclusion: The formal process within CIEMER effectively yielded four promising prototypes, demonstrating its sufficiency. Students positively acknowledged the benefits of interdisciplinary collaboration, finding it supportive and competence-enhancing. Additionally, the Extended Reflections enabled rapid and targeted iterations, streamlining the reflection of the current state and Creation process.
  • Thumbnail Image
    ItemOpen Access
    Digital interactive experience- and game-based fall interventions for community-dwelling healthy older adults : a cross-disciplinary systematic review
    (2025) Ciemer, Celina; Kröper, Lisa; Klotzbier, Thomas J.; Ghellal, Sabiha; Schott, Nadja
    Introduction: Falls pose significant health risks to older adults, impacting their quality of life. Preventive strategies are crucial, as research shows that fall prevention interventions can effectively reduce fall risks. However, these interventions often suffer from low adherence and uptake. Digital, interactive interventions, incorporating experience-, and game-related aspects, offer a promising solution, making this topic inherently cross-disciplinary. Objective: This review aims to assess the current landscape of digital interactive experience and game-based fall interventions for community-dwelling, healthy older adults. It focuses on integrating Human Movement Science and User Experience & Game Design perspectives, emphasizing the cross-disciplinary nature of this research.
    Methods: We employed a cross-disciplinary literature search framework, searching the databases ACM-DL, IEEE-Xplore, ScienceDirect, PubMed, Scopus, and Web of Science. The review focused on healthy community-dwelling older adults (50+), including those at risk of falling. Excluded were studies involving chronic diseases, non-age-related impairments, other age groups, or individuals receiving care. Only digital, interactive fall prevention interventions without commercial software were considered. Studies published between 2000–2024 were included. A qualitative thematic synthesis was conducted, focusing on four categories: Objectives (O), Design and Development (D), Types of Intervention (T), and Evaluation Methods (E).
    Results: The search yielded 2,747 results, with 59 articles included in the final synthesis. Objectives were mainly driven by a combination of HMS and UXG rather than a single aspect. In Design and Development it was observed that concept-based design was scarce, with most being procedure-based. Descriptions of interventions frequently lacked specificity, particularly in-depth experience-related terminology and exercise descriptions. Evaluation methods were found to be more frequently informed by both HMS and UXG, although only four studies used a mixed-method approach to explore their interplay. Among included articles, most aspects incorporated both HMS and UXG across all four categories: O( n = 37), D( n = 37), T( n = 54), and E( n = 21).
    Conclusion: The review underscores the importance of digital interactive experience- and game-based fall prevention interventions. It highlights the need for enhanced cross-disciplinary collaboration between HMS and UXG to address gaps, such as the lack of a shared thesaurus and standardized guidelines, which are vital for improving transparency, reproducibility, and the refinement of these interventions.