13 Zentrale Universitätseinrichtungen
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/14
Browse
Item Open Access Analysis of hydrogen-induced changes in the cyclic deformation behavior of AISI 300-series austenitic stainless steels using cyclic indentation testing(2021) Brück, Sven; Blinn, Bastian; Diehl, Katharina; Wissing, Yannick; Müller, Julian; Schwarz, Martina; Christ, Hans-Jürgen; Beck, Tilmann; Staedler, Thorsten; Jiang, Xin; Butz, Benjamin; Weihe, StefanThe locally occurring mechanisms of hydrogen embrittlement significantly influence the fatigue behavior of a material, which was shown in previous research on two different AISI 300-series austenitic stainless steels with different austenite stabilities. In this preliminary work, an enhanced fatigue crack growth as well as changes in crack initiation sites and morphology caused by hydrogen were observed. To further analyze the results obtained in this previous research, in the present work the local cyclic deformation behavior of the material volume was analyzed by using cyclic indentation testing. Moreover, these results were correlated to the local dislocation structures obtained with transmission electron microscopy (TEM) in the vicinity of fatigue cracks. The cyclic indentation tests show a decreased cyclic hardening potential as well as an increased dislocation mobility for the conditions precharged with hydrogen, which correlates to the TEM analysis, revealing courser dislocation cells in the vicinity of the fatigue crack tip. Consequently, the presented results indicate that the hydrogen enhanced localized plasticity (HELP) mechanism leads to accelerated crack growth and change in crack morphology for the materials investigated. In summary, the cyclic indentation tests show a high potential for an analysis of the effects of hydrogen on the local cyclic deformation behavior.Item Open Access Anisotropy of the tribological performance of periodically oxidated laser-induced periodic surface structures(2023) Onufrijevs, Pavels; Grase, Liga; Padgurskas, Juozas; Rukanskis, Mindaugas; Durena, Ramona; Willer, Dieter; Iesalnieks, Mairis; Lungevics, Janis; Kaupuzs, Jevgenijs; Rukuiža, Raimundas; Kriūkienė, Rita; Hanesch, Yuliya; Speicher, MagdalenaLaser-induced periodic surface structures (LIPSS) enable advanced surface functionalization with broad applications in various fields such as micro- and nanoelectronics, medicine, microbiology, tribology, anti-icing systems, and more. This study demonstrates the possibility of achieving anisotropy in the tribological behavior of C45-grade steel structured by nanosecond laser radiation using the LIPSS method. The lateral surface of the steel roller was irradiated with a pulsed Nd:YAG laser at an optimum intensity I = 870 MW/cm2 for the formation of LIPSS. Two sets of samples were formed with LIPSS that were perpendicular and parallel to the roller’s rotational motion direction. The Raman intensity maps revealed that the LIPSS structure consisted of periodically arranged oxides at the top of hills. At the same time, the valleys of the LIPSS structures were almost not oxidized. These results correlated well with scanning electron microscopy energy dispersive X-ray spectroscopy mapping and atomic force microscopy measurements. A comparison of Raman and X-ray photoelectron spectroscopy spectra revealed that both the magnetite phase and traces of the hematite phase were present on the surface of the samples. Tribological tests were performed in two cycles with periodic changes in the normal clamping force and sliding speed. It was found that the LIPSS structures which were formed perpendicularly to the sliding direction on the roller had a significantly greater impact on the friction processes. Structures oriented perpendicular to the direction of motion had a positive influence on reducing the energy consumption of a friction process as well as increasing the wear resistance compared to LIPSS formed parallel to the direction of motion or ones having a non-texturized surface. Laser texturing to produce LIPSS perpendicular to the direction of motion could be recommended for friction pairs operating under low-load conditions.Item Open Access Can a hand-held 3D scanner capture temperature-induced strain of mortar samples : comparison between experimental measurements and numerical simulations(2023) Haynack, Alexander; Zadran, Sekandar; Timothy, Jithender J.; Gambarelli, Serena; Kränkel, Thomas; Thiel, Charlotte; Ožbolt, Joško; Gehlen, ChristophThe expected lifespan of cement-based materials, particularly concrete, is at least 50 years. Changes in the pore structure of the material need to be considered due to external influences and associated transport processes. The expansion behaviour of concrete and mortar during freeze-thaw attacks, combined with de-icing salt agents, is crucial for both internal and external damage. It is essential to determine and simulate the expansion behaviour of these materials in the laboratory, as well as detect the slow, long-term expansion in real structures. This study measures the expansion of mortar samples during freeze-thaw loading using a high-resolution hand-held 3D laser scanner. The specimens are prepared with fully or partially saturated pore structures through water storage or drying. During freeze-thaw experiments, the specimens are exposed to pure water or a 3% sodium chloride solution (NaCl). Results show contraction during freezing and subsequent expansion during thawing. Both test solutions exhibit similar expansion behaviour, with differences primarily due to saturation levels. Further investigations are required to explore the changing expansion behaviour caused by increasing microcracking resulting from continuous freeze-thaw cycles. A numerical analysis using a 3D coupled hygro-thermo-mechanical (HTM) model is conducted to examine the freeze–thaw behaviour of the mortar. The model accurately represents the freezing deformation during the freeze–thaw cycle.Item Open Access Coherent mesh representation for parallel I/O of unstructured polyhedral meshes(2024) Weiß, R. Gregor; Lesnik, Sergey; Galeazzo, Flavio C. C.; Ruopp, Andreas; Rusche, HenrikThis paper presents a new mesh data layout for parallel I/O of linear unstructured polyhedral meshes. The new mesh representation infers coherence across entities of different topological dimensions, i.e., grid cells, faces, and points. The coherence due to cell-to-face and face-to-point connectivities of the mesh is formulated as a tree data structure distributed across processors. The mesh distribution across processors creates consecutive and contiguous slices that render an optimized data access pattern for parallel I/O. A file format using the coherent mesh representation, developed and tested with OpenFOAM, enables the usability of the software at unprecedented scales. Further implications of the coherent and sliceable mesh representation arise due to simplifications in partitioning and diminished pre- and post-processing overheads.Item Open Access Compressive fatigue investigation on high-strength and ultra-high-strength concrete within the SPP 2020(2022) Basaldella, Marco; Jentsch, Marvin; Oneschkow, Nadja; Markert, Martin; Lohaus, LudgerThe influence of the compressive strength of concrete on fatigue resistance has not been investigated thoroughly and contradictory results can be found in the literature. To date, the focus of concrete fatigue research has been on the determination of the numbers of cycles to failure. Concerning the fatigue behaviour of high-strength concrete (HPC) and, especially, ultra-high-strength concrete (UHPC), which is described by damage indicators such as strain and stiffness development, little knowledge is available, as well as with respect to the underlying damage mechanisms. This lack of knowledge has led to uncertainties concerning the treatment of high-strength and ultra-high-strength concretes in the fatigue design rules. This paper aims to decrease the lack of knowledge concerning the fatigue behaviour of concrete compositions characterised by a very high strength. Within the priority programme SPP 2020, one HPC and one UHPC subjected to monotonically increasing and cyclic loading were investigated comparatively in terms of their numbers of cycles to failure, as well as the damage indicators strain and stiffness. The results show that the UHPC reaches a higher stiffness and a higher ultimate strain and strength than the HPC. The fatigue investigations reveal that the UHPC can resist a higher number of cycles to failure than the HPC and the damage indicators show an improved fatigue behaviour of the UHPC compared to the HPC.Item Open Access Container orchestration on HPC systems through Kubernetes(2021) Zhou, Naweiluo; Georgiou, Yiannis; Pospieszny, Marcin; Zhong, Li; Zhou, Huan; Niethammer, Christoph; Pejak, Branislav; Marko, Oskar; Hoppe, DennisContainerisation demonstrates its efficiency in application deployment in Cloud Computing. Containers can encapsulate complex programs with their dependencies in isolated environments making applications more portable, hence are being adopted in High Performance Computing (HPC) clusters. Singularity, initially designed for HPC systems, has become their de facto standard container runtime. Nevertheless, conventional HPC workload managers lack micro-service support and deeply-integrated container management, as opposed to container orchestrators. We introduce a Torque-Operator which serves as a bridge between HPC workload manager (TORQUE) and container orchestrator (Kubernetes). We propose a hybrid architecture that integrates HPC and Cloud clusters seamlessly with little interference to HPC systems where container orchestration is performed on two levels.Item Open Access Datamator : an authoring tool for creating datamations via data query decomposition(2023) Guo, Yi; Cao, Nan; Cai, Ligan; Wu, Yanqiu; Weiskopf, Daniel; Shi, Danqing; Chen, QingDatamation is designed to animate an analysis pipeline step by step, serving as an intuitive and efficient method for interpreting data analysis outcomes and facilitating easy sharing with others. However, the creation of a datamation is a difficult task that demands expertise in diverse skills. To simplify this task, we introduce Datamator, a language-oriented authoring tool developed to support datamation generation. In this system, we develop a data query analyzer that enables users to generate an initial datamation effortlessly by inputting a data question in natural language. Then, the datamation is displayed in an interactive editor that affords users the ability to both edit the analysis progression and delve into the specifics of each step undertaken. Notably, the Datamator incorporates a novel calibration network that is able to optimize the outputs of the query decomposition network using a small amount of user feedback. To demonstrate the effectiveness of Datamator, we conduct a series of evaluations including performance validation, a controlled user study, and expert interviews.Item Open Access Editorial - visualizing big culture and history data(2025) Windhager, Florian; Koch, Steffen; Münster, Sander; Mayr, EvaItem Open Access Every thing can be a hero! : narrative visualization of person, object, and other biographies(2024) Kusnick, Jakob; Mayr, Eva; Seirafi, Kasra; Beck, Samuel; Liem, Johannes; Windhager, FlorianKnowledge communication in cultural heritage and digital humanities currently faces two challenges, which this paper addresses: On the one hand, data-driven storytelling in these fields has mainly focused on human protagonists, while other essential entities (such as artworks and artifacts, institutions, or places) have been neglected. On the other hand, storytelling tools rarely support the larger chains of data practices, which are required to generate and shape the data and visualizations needed for such stories. This paper introduces the InTaVia platform, which has been developed to bridge these gaps. It supports the practices of data retrieval, creation, curation, analysis, and communication with coherent visualization support for multiple types of entities. We illustrate the added value of this open platform for storytelling with four case studies, focusing on (a) the life of Albrecht Dürer (person biography), (b) the Saliera salt cellar by Benvenuto Cellini (object biography), (c) the artist community of Lake Tuusula (group biography), and (d) the history of the Hofburg building complex in Vienna (place biography). Numerous suggestions for future research arise from this undertaking.Item Open Access Fatigue behavior and lifetime assessment of an austenitic stainless steel in the VHCF regime at ambient and elevated temperatures(2023) Schopf, Tim; Weihe, Stefan; Daniel, Tobias; Smaga, Marek; Beck, TilmannWhile the LCF behavior of austenitic steels used in nuclear power plants is already well investigated, the VHCF regime has not been characterized in detail so far. For this, fatigue tests on the metastable austenitic steel AISI 347/1.4550 were performed with a servo‐hydraulic testing system at test frequencies up to 980 Hz and with an ultrasonic fatigue testing system at a test frequency of 20,000 Hz. To compare these test results to the ASME standard fatigue curve (total strain amplitude vs. load cycles to failure), a fictitious‐elastic and an elastically plastic assessment method was used. The elaborated elastic-plastic assessment method generates good results, while a purely elastic assessment in the VHCF regime, commonly used in literature, leads to significantly nonconservative results. Moreover, phase transformation from metastable austenite into stable α′‐martensite can take place, and no specimen failure occurs in the VHCF regime. Consequently, for this material, a real endurance limit exists.Item Open Access Feature-based deformation for flow visualization(2024) Straub, Alexander; Sadlo, Filip; Ertl, ThomasWe present an approach that supports the analysis of flow dynamics in the neighborhood of curved line-type features, such as vortex core lines, attachment lines, and trajectories. We achieve this with continuous deformation to the flow field to straighten such features. This provides “deformed frames of reference”, within which qualitative flow dynamics are better observable with respect to the feature. Our approach operates at interactive rates on graphics hardware, and supports exploration of large and complex datasets by continuously navigating the additional degree of freedom of deformation. We demonstrate the properties and the utility of our approach using synthetic and simulated flow fields, with a focus on the application to vortex core lines.Item Unknown Fire rating of post-installed anchors and rebars(2020) Mahrenholtz, Philipp; Sharma, AkanshuFire safety is a critical performance aspect of construction products, and post-installed anchors and rebars are no exemption in that regard. During their service life, anchors and rebars are subjected to different kinds of load actions, so they have to be qualified and designed for critical safety performance. While the qualification guidelines for static and seismic loading have matured to conclusive requirements over the past two decades, the requirements for determining the resistance to fire are just about to consolidate. This contribution strives to provide clarity on the fire rating of post-installed anchors and rebars. For this, the current status of the regulations, as well as the underlying background, is reviewed after a brief introduction. Typical examples of fire ratings in the field of post-installed anchors and rebars are given, and recent research undertaken to close the last regulative gaps is briefly presented.Item Unknown Hagrid : using Hilbert and Gosper curves to gridify scatterplots(2022) Cutura, Rene; Morariu, Cristina; Cheng, Zhanglin; Wang, Yunhai; Weiskopf, Daniel; Sedlmair, MichaelA common enhancement of scatterplots represents points as small multiples, glyphs, or thumbnail images. As this encoding often results in overlaps, a general strategy is to alter the position of the data points, for instance, to a grid-like structure. Previous approaches rely on solving expensive optimization problems or on dividing the space that alter the global structure of the scatterplot. To find a good balance between efficiency and neighborhood and layout preservation, we propose Hagrid , a technique that uses space-filling curves (SFCs) to “gridify” a scatterplot without employing expensive collision detection and handling mechanisms. Using SFCs ensures that the points are plotted close to their original position, retaining approximately the same global structure. The resulting scatterplot is mapped onto a rectangular or hexagonal grid, using Hilbert and Gosper curves. We discuss and evaluate the theoretic runtime of our approach and quantitatively compare our approach to three state-of-the-art gridifying approaches, DGrid , Small multiples with gaps SMWG , and CorrelatedMultiples CMDS , in an evaluation comprising 339 scatterplots. Here, we compute several quality measures for neighborhood preservation together with an analysis of the actual runtimes. The main results show that, compared to the best other technique, Hagrid is faster by a factor of four, while achieving similar or even better quality of the gridified layout. Due to its computational efficiency, our approach also allows novel applications of gridifying approaches in interactive settings, such as removing local overlap upon hovering over a scatterplot.Item Unknown Impact of wind pressure coefficients on the natural ventilation effectiveness of buildings through simulations(2024) Sakiyama, Nayara Rodrigues Marques; Carlo, Joyce Correna; Sakiyama, Felipe Isamu Harger; Abdessemed, Nadir; Frick, Jürgen; Garrecht, HaraldNatural Ventilation Effectiveness (NVE) is a performance metric that quantifies when outdoor airflows can be used as a cooling strategy to achieve indoor thermal comfort. Based on standard ventilation threshold and building energy simulation (BES) models, the NVE relates available and required airflows to quantify the usefulness of natural ventilation (NV) through design and building evaluation. Since wind is a significant driving force for ventilation, wind pressure coefficients (Cp) represent a critical boundary condition when assessing building airflows. Therefore, this paper investigates the impact of different Cp sources on wind-driven NVE results to see how sensitive the metric is to this variable. For that, an experimental house and a measurement period were used to develop and calibrate the initial BES model. Four Cp sources are considered: an analytical model from the BES software (i), surface-averaged Cp values for building windows that were calculated with Computational Fluid Dynamics (CFD) simulations using OpenFOAM through a cloud-based platform (iia,b,c), and two databases-AIVC (iii) and Tokyo Polytechnic University (TPU) (iv). The results show a variance among the Cp sources, which directly impacts airflow predictions; however, its effect on the performance metric was relatively small. The variation in the NVE outcomes with different Cp’s was 3% at most, and the assessed building could be naturally ventilated around 75% of the investigated time on the first floor and 60% in the ground floor spaces.Item Unknown An innovative technological infrastructure for managing SARS-CoV-2 data across different cohorts in compliance with General Data Protection Regulation(2024) Dellacasa, Chiara; Ortali, Maurizio; Rossi, Elisa; Abu Attieh, Hammam; Osmo, Thomas; Puskaric, Miroslav; Rinaldi, Eugenia; Prasser, Fabian; Stellmach, Caroline; Cataudella, Salvatore; Agarwal, Bhaskar; Mata Naranjo, Juan; Scipione, GabriellaBackground: The ORCHESTRA project, funded by the European Commission, aims to create a pan-European cohort built on existing and new large-scale population cohorts to help rapidly advance the knowledge related to the prevention of the SARS-CoV-2 infection and the management of COVID-19 and its long-term sequelae. The integration and analysis of the very heterogeneous health data pose the challenge of building an innovative technological infrastructure as the foundation of a dedicated framework for data management that should address the regulatory requirements such as the General Data Protection Regulation (GDPR). Methods: The three participating Supercomputing European Centres (CINECA - Italy, CINES - France and HLRS - Germany) designed and deployed a dedicated infrastructure to fulfil the functional requirements for data management to ensure sensitive biomedical data confidentiality/privacy, integrity, and security. Besides the technological issues, many methodological aspects have been considered: Berlin Institute of Health (BIH), Charité provided its expertise both for data protection, information security, and data harmonisation/standardisation. Results: The resulting infrastructure is based on a multi-layer approach that integrates several security measures to ensure data protection. A centralised Data Collection Platform has been established in the Italian National Hub while, for the use cases in which data sharing is not possible due to privacy restrictions, a distributed approach for Federated Analysis has been considered. A Data Portal is available as a centralised point of access for non-sensitive data and results, according to findability, accessibility, interoperability, and reusability (FAIR) data principles. This technological infrastructure has been used to support significative data exchange between population cohorts and to publish important scientific results related to SARS-CoV-2. Conclusions: Considering the increasing demand for data usage in accordance with the requirements of the GDPR regulations, the experience gained in the project and the infrastructure released for the ORCHESTRA project can act as a model to manage future public health threats. Other projects could benefit from the results achieved by ORCHESTRA by building upon the available standardisation of variables, design of the architecture, and process used for GDPR compliance.Item Unknown Investigations of metallurgical differences in AISI 347 and their influence on deformation and transformation behaviour and resulting fatigue life(2024) Veile, Georg; Regitz, Elen; Smaga, Marek; Weihe, Stefan; Beck, TillmannDue to variations in chemical composition and production processes, homonymous austenitic stainless steels can differ significantly regarding their initial microstructure, metastability, and thus, their fatigue behavior. Microstructural investigations and fatigue tests have been performed in order to evaluate this aspect. Three different batches and production forms of nominally one type of steel AISI 347 were investigated under monotonic tensile tests and cyclic loading under total strain and stress control in low and high cycle fatigue regimes, respectively. The deformation induced α’-martensite formation was investigated globally by means of in situ magnetic measurements and locally using optical light microscopy of color etching of micrographs. The investigation showed that the chemical composition and the different production processes influence the material behavior. In fatigue tests, a higher metastability and thus a higher level of deformation induced α’-martensite pronounced cyclic hardening, resulting in significantly greater endurable stresses in total strain-controlled tests and an increase in fatigue life in stress-controlled tests. For applications of non-destructive-testing, detailed knowledge of a component’s metastability is required. In less metastable batches and for lower stress levels, α’-martensite primarily formed at the plasticization zone of a crack. Furthermore, the formation and nucleation points of α’-martensite were highly dependent on grain size and the presence of δ-ferrite. This study provides valuable insights into the different material behavior of three different batches with the same designation, i.e., AISI 347, due to different manufacturing processes and differences in the chemical composition, metastability, and microstructure.Item Unknown Kultureller Wandel(2024) Becker, Laura; Hornyak, Harald; Kettelhack, Julia; Löffler, Susanne; Petersen, Timo; Steinwand, Melanie; Trötschel, Tanja; Waller, Helmut; Wannagat, Christin; Wetzel-Vollmer, MarenDie digitale Arbeit verändert unsere Arbeitswelt, nicht nur punktuell, sondern grundlegend. Zwar hat es immer schon Veränderungen gegeben, dass diese sich aber so schnell und kaum mehr absehbar vollziehen, ist neu und stellt die Gesellschaft insgesamt vor große Herausforderungen. Dass diese Herausforderungen zudem in eine Zeit fallen, die durch allgemeine Verunsicherung durch Klimakrise, Kriege, nachlassendes wirtschaftliches Wachstum und gesellschaftliche Polarisierung charakterisiert ist, führt in der Wahrnehmung der Autor*innen des vorliegenden White Papers zu unterschiedlichen Reaktionen: Die einen nehmen diese Herausforderungen als Teil einer umfassenden allgemeinen Krise wahr, resignieren oder stemmen sich allem Neuen entgegen. Andere sehen in diesen Herausforderungen der Arbeitswelt auch eine Chance, die ihnen konkrete Handlungsmöglichkeiten eröffnet und Verbesserungen ermöglicht. Als Ergebnis des Think Tanks TT09 „Kultureller Wandel“ der Landesinitiative baden-württembergischer Universitäten bwUni.digital zeigen die Autor*innen dieses White Papers für Hochschulleitungen sowie für Organisations- und Personalentwickler*innen Maßnahmen der Kulturdiagnostik und Kulturentwicklung sowie konkrete Handlungsempfehlungen für eine erfolgreiche Transformationsbegleitung auf. Mit dem White Paper wird damit der bisherige Besprechungskatalog von bwUni.digital, u.a. zur Struktur und Strategie digitalisierter administrativer Prozesse, nun auch um das Thema der sozialen Akzeptanz durch einen kulturellen Wandel vervollständigt. Denn Dreh- und Angelpunkt für eine erfolgreiche Transformation, ob digital oder nicht, sind und bleiben die Organisationskultur und ihre Veränderungsfähigkeit.Item Unknown Local bilinear computation of Jacobi sets(2022) Klötzl, Daniel; Krake, Tim; Zhou, Youjia; Hotz, Ingrid; Wang, Bei; Weiskopf, DanielWe propose a novel method for the computation of Jacobi sets in 2D domains. The Jacobi set is a topological descriptor based on Morse theory that captures gradient alignments among multiple scalar fields, which is useful for multi-field visualization. Previous Jacobi set computations use piecewise linear approximations on triangulations that result in discretization artifacts like zig-zag patterns. In this paper, we utilize a local bilinear method to obtain a more precise approximation of Jacobi sets by preserving the topology and improving the geometry. Consequently, zig-zag patterns on edges are avoided, resulting in a smoother Jacobi set representation. Our experiments show a better convergence with increasing resolution compared to the piecewise linear method. We utilize this advantage with an efficient local subdivision scheme. Finally, our approach is evaluated qualitatively and quantitatively in comparison with previous methods for different mesh resolutions and across a number of synthetic and real-world examples.Item Open Access Lustre I/O performance investigations on Hazel Hen : experiments and heuristics(2021) Seiz, Marco; Offenhäuser, Philipp; Andersson, Stefan; Hötzer, Johannes; Hierl, Henrik; Nestler, Britta; Resch, MichaelWith ever-increasing computational power, larger computational domains are employed and thus the data output grows as well. Writing this data to disk can become a significant part of runtime if done serially. Even if the output is done in parallel, e.g., via MPI I/O, there are many user-space parameters for tuning the performance. This paper focuses on the available parameters for the Lustre file system and the Cray MPICH implementation of MPI I/O. Experiments on the Cray XC40 Hazel Hen using a Cray Sonexion 2000 Lustre file system were conducted. In the experiments, the core count, the block size and the striping configuration were varied. Based on these parameters, heuristics for striping configuration in terms of core count and block size were determined, yielding up to a 32-fold improvement in write rate compared to the default. This corresponds to 85 GB/s of the peak bandwidth of 202.5 GB/s. The heuristics are shown to be applicable to a small test program as well as a complex application.Item Open Access Micro-twinning in IN738LC manufactured with laser powder bed fusion(2023) Megahed, Sandra; Krämer, Karl Michael; Kontermann, Christian; Heinze, Christoph; Udoh, Annett; Weihe, Stefan; Oechsner, MatthiasComponents manufactured with Metal Laser Powder Bed Fusion (PBF-LB/M) are built in a layerwise fashion. The PBF-LB/M build orientation affects grain morphology and orientation. Depending on the build orientation, microstructures from equiaxed to textured grains can develop. In the case of a textured microstructure, a clear anisotropy of the mechanical properties affecting short- and long-term mechanical properties can be observed, which must be considered in the component design. Within the scope of this study, the IN738LC tensile and creep properties of PBF-LB/M samples manufactured in 0° (perpendicular to build direction), 45° and 90° (parallel to build direction) build orientations were investigated. While the hot tensile results (at 850 °C) are as expected, where the tensile properties of the 45° build orientation lay between those of 0° and 90°, the creep results (performed at 850 °C and 200 MPa) of the 45° build orientation show the least time to rupture. This study discusses the microstructural reasoning behind the peculiar creep behavior of 45° oriented IN738LC samples and correlates the results to heat-treated microstructures and the solidification conditions of the PBF-LB/M process itself.