08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
14 results
Search Results
Item Open Access Thermodynamic uncertainty relation for stochastic field theories : general formulation and application to the Kardar-Parisi-Zhang equation(2022) Niggemann, Oliver; Seifert, Udo (Prof. Dr.)Item Open Access Numerical study of the thermodynamic uncertainty relation for the KPZ-equation(2021) Niggemann, Oliver; Seifert, UdoA general framework for the field-theoretic thermodynamic uncertainty relation was recently proposed and illustrated with the (1+1) dimensional Kardar-Parisi-Zhang equation. In the present paper, the analytical results obtained there in the weak coupling limit are tested via a direct numerical simulation of the KPZ equation with good agreement. The accuracy of the numerical results varies with the respective choice of discretization of the KPZ non-linearity. Whereas the numerical simulations strongly support the analytical predictions, an inherent limitation to the accuracy of the approximation to the total entropy production is found. In an analytical treatment of a generalized discretization of the KPZ non-linearity, the origin of this limitation is explained and shown to be an intrinsic property of the employed discretization scheme.Item Open Access The two scaling regimes of the thermodynamic uncertainty relation for the KPZ-equation(2021) Niggemann, Oliver; Seifert, UdoWe investigate the thermodynamic uncertainty relation for the (1+1) dimensional Kardar-Parisi-Zhang (KPZ) equation on a finite spatial interval. In particular, we extend the results for small coupling strengths obtained previously to large values of the coupling parameter. It will be shown that, due to the scaling behavior of the KPZ equation, the thermodynamic uncertainty relation (TUR) product displays two distinct regimes which are separated by a critical value of an effective coupling parameter. The asymptotic behavior below and above the critical threshold is explored analytically. For small coupling, we determine this product perturbatively including the fourth order; for strong coupling we employ a dynamical renormalization group approach. Whereas the TUR product approaches a value of 5 in the weak coupling limit, it asymptotically displays a linear increase with the coupling parameter for strong couplings. The analytical results are then compared to direct numerical simulations of the KPZ equation showing convincing agreement.Item Open Access Nonlinear phenomena in stochastic thermodynamics : from optimal protocols to criticality(2024) Remlein, Benedikt; Seifert, Udo (Prof. Dr.)Item Open Access On stochastic thermodynamics under incomplete information : thermodynamic inference from Markovian events(2024) Meer, Jann van der; Seifert, Udo (Prof. Dr.)Item Open Access Stochastic thermodynamics : from hydrodynamics to stochastic inference(2021) Uhl, Matthias; Seifert, Udo (Prof. Dr.)Item Open Access Stochastische Thermodynamik kohärenter Oszillationen(2022) Oberreiter, Lukas; Seifert, Udo (Prof. Dr.)Item Open Access Bounds on dynamical quantities in stochastic non-equilibrium systems : from dynamical phenomena to thermodynamic inference(2024) Degünther, Julius; Seifert, Udo (Prof. Dr.)Item Open Access Thermodynamic uncertainty relations for time-dependent driving(2022) Koyuk, Timur; Seifert, Udo (Prof. Dr.)Item Unknown Anwendungen für Renewal Prozesse in der stochastischen Thermodynamik : Semi-Markov Prozesse als Konzept und Werkzeug für zustandsbasierte und übergangsbasierte thermodynamische Inferenz(2025) Ertel, Benjamin; Seifert, Udo (Prof. Dr.)