Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13496
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorHörning, Marcel-
dc.contributor.authorBullmann, Torsten-
dc.contributor.authorShibata, Tatsuo-
dc.date.accessioned2023-09-13T12:11:50Z-
dc.date.available2023-09-13T12:11:50Z-
dc.date.issued2021-
dc.identifier.issn2296-634X-
dc.identifier.other1866247964-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135153de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13515-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13496-
dc.description.abstractPIP3 dynamics observed in membranes are responsible for the protruding edge formation in cancer and amoeboid cells. The mechanisms that maintain those PIP3 domains in three-dimensional space remain elusive, due to limitations in observation and analysis techniques. Recently, a strong relation between the cell geometry, the spatial confinement of the membrane, and the excitable signal transduction system has been revealed by Hörning and Shibata (2019) using a novel 3D spatiotemporal analysis methodology that enables the study of membrane signaling on the entire membrane (Hörning and Shibata, 2019). Here, using 3D spatial fluctuation and phase map analysis on actin polymerization inhibited Dictyostelium cells, we reveal a spatial asymmetry of PIP3 signaling on the membrane that is mediated by the contact perimeter of the plasma membrane - the spatial boundary around the cell-substrate adhered area on the plasma membrane. We show that the contact perimeter guides PIP3 waves and acts as a pinning site of PIP3 phase singularities, that is, the center point of spiral waves. The contact perimeter serves as a diffusion influencing boundary that is regulated by a cell size- and shape-dependent curvature. Our findings suggest an underlying mechanism that explains how local curvature can favor actin polymerization when PIP3 domains get pinned at the curved protrusive membrane edges in amoeboid cells.en
dc.language.isoende
dc.relation.uridoi:10.3389/fcell.2021.670943de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleLocal membrane curvature pins and guides excitable membrane waves in chemotactic and macropinocytic cells : biomedical insights from an innovative simple modelen
dc.typearticlede
dc.date.updated2021-09-29T13:40:30Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Biomaterialien und biomolekulare Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceFrontiers in cell and developmental biology 9 (2021), No. 670943de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Data_Sheet_1.pdfSupplement1,99 MBAdobe PDFÖffnen/Anzeigen
fcell-09-670943.pdfArtikel4,52 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons